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Abstract

This thesis will present some major results on the distribution of squarefree num-
bers, focusing in particular on Montgomery–Hooley style variances of squarefree num-
bers in arithmetic progressions. Combining the work of R.C. Vaughan [Vau05], and
J. Brüdern and T.D. Wooley [BW11], we will prove an asymptotic formula for a
sparse variance in which the moduli are restricted to the values of a polynomial.

Zusammenfassung

Diese Arbeit präsentiert einige wichtige Resultate in der Verteilung der quadratfreien
Zahlen, wobei der Schwerpunkt insbesondere auf Varianzen der quadratfreien Zahlen
in arithmetischen Progressionen im Stile von Montgomery–Hooley liegt. Indem wir die
Methoden von R.C. Vaughan [Vau05], und J. Brüdern und T.D. Wooley [BW11]
zusammenführen, werden wir eine asymptotische Formel für eine ausgedünnte Varianz
beweisen, in der die Moduln auf die Werte eines Polynoms eingeschränkt sind.



1 Introduction

1 Introduction

1.1 Overview

We call an integer n squarefree or quadratfrei if it is not divisible by any square, i. e., if
p2 - n for all primes p. The characteristic function of the squarefree numbers is µ(n)2,
hence we can define

Q(x; k, l) :=
∑
n≤x

n≡l (k)

µ(n)2 (1)

as the number of squarefree integers not exceeding x congruent to l modulo k. As it
turns out, the asymptotic density

g(k, l) := lim
x→∞

Q(x; k, l)

x
(2)

is positive, unless (k, l) is not squarefree, in which case it obviously vanishes. We will
have a closer look at g(k, l) in Section 1.3. From (2) we obtain the asymptotic

Q(x; k, l) = g(k, l)x+ E(x; k, l), (3)

where obviously
E(x; k, l) = o(x).

We will see that indeed we have

E(x; k, l)� x1/2. (4)

The Dirichlet series associated with the characteristic function of the squarefree numbers
is

∞∑
n=1

µ(n)2n−s =
∏
p

(
1 + p−s

)
=
∏
p

(
1− p−2s

1− p−s

)
=

ζ(s)

ζ(2s)
, (5)

where the product runs over all primes p. Under the assumption of the Riemann hy-
pothesis we would thus expect the error to be

E(x; k, l)� (x/k)1/4+ε. (6)

We will go into some more details on the ζ-function and the role of the Riemann hy-
pothesis in Section 1.4. However, even without this strong assumption, we can obtain
results of similar strength if we consider the mean over the residue classes. For that
purpose we define the variance V (x, y) by

V (x, y) :=
∑
k≤y

k∑
l=1

E(x; k, l)2. (7)

On the Distribution of Squarefree Numbers in Arithmetic Progressions 1



1 Introduction

Plugging the expected error (6) into this definition yields an expected upper bound of

V (x, y)� x1/2+εy3/2−ε.

This turns out to be the right magnitude. R.C. Vaughan [Vau05] has proved uncon-
ditionally in the more general case of k-free numbers the asymptotic

V (x, y) = c1x
1/2y3/2 +O

(
x1/4y7/4 exp

(
−c2

(log 2x/y)3/5

(log log 3x/y)1/5

))
+O

(
x3/2 exp

(
−c3

(log x)3/5

(log log x)1/5

))
for y ≤ x, where c1, c2, and c3 are certain constants. The aim of this paper is to generalise
this result to a sparse variance where the moduli only take values of a polynomial, albeit
less thorough bounds on the error terms.

1.2 Historic Development

Before we go into further details, we want to take a closer look at the genesis of these
kinds of average results. Squarefree numbers are obviously closely related to prime
numbers, but have naturally a positive asymptotic density and a more even distribution.
However, one can usually obtain similar results for prime and squarefree numbers with
resembling methods.

The idea of examining the square mean of error terms dates back to M.B. Barban
[Bar63, Bar64, Bar66], and H. Davenport and H. Halberstam [DH66, DH68]. They
introduced the definition

Ṽ (x, y) :=
∑
k≤y

k∑
l=1

(l,k)=1

(
ϑ(x; k, l)− x

ϕ(k)

)2

,

where ϑ(x; k, l) is Chebychev’s function in arithmetic progressions, and proved an upper
bound. Shortly afterwards, this was improved by H.L. Montgomery [Mon70, Mon71]
and C. Hooley [Hoo75a] to an asymptotic formula which takes the shape

Ṽ (x, y) = xy log y + c4xy +O
(
x1/2y3/2

)
+O

(
x2(log x)−A

)
,

where c4 is a certain constant, y ≤ x, and A > 0 is arbitrary.

As the distribution of the squarefree numbers is generally less erratic, the corresponding
results are slightly stronger. The variance V (x, y) defined in (7) has been studied by
R.C. Orr [Orr69, Orr71], M. J. Croft [Cro75], and R. Warlimont [War69, War72,

On the Distribution of Squarefree Numbers in Arithmetic Progressions 2
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War80]. The latter proved the asymptotic

V (x, y) = c5x
1/2y3/2 +O

(
x1/4y7/4 exp

(
−c6(log x/y)1/5

))
+O

(
x3/2(log x)7/2

)
,

where c5 and c6 are certain constants.

Squarefree numbers can be generalised to k-free numbers that are not divisible by any
kth power. Usually, results on k-free numbers are not harder to obtain than in the
squarefree case. Consequently, a number of papers on the distribution of k-free numbers
has been published, generalising the squarefree results. J. Brüdern, A. Granville,
A. Perelli, R.C. Vaughan, and T.D. Wooley [BGP+98] have given bounds on
sums over k-free numbers. Amongst other results, they proved the bound [BGP+98,
Lemma 2.2],

V (x, y)�

{
x1+εy, y ≤ x,

y2 log(2y), y > x.
(8)

R.C. Vaughan [Vau98a, Vau98b] has examined the distribution of general sequences
with similar properties to k-free numbers, and applied these results to k-free numbers
in the above mentioned paper [Vau05].

One may think of several variations in the definition of the variance. P.D.T.A. El-
liott [Ell01, Ell02] introduced the idea of restricting the moduli to the value of a
polynomial. He gave an upper bound, which was then improved by H. Mikawa and
T.P. Peneva [MP05]. J. Brüdern and T.D. Wooley [BW11] modified this theme,
using the definition

Ṽf (x, y) :=
∑
k≤y

f ′(k)

f(k)∑
l=1

(l,f(k))=1

(
ϑ(x; f(k), l)− x

ϕ(f(k))

)2

. (9)

Note that the factor f ′(k) has been introduced to give the sparse innermost sum the
necessary weight to contribute sufficiently to the variance. Their result then assures for
f(y) ≤ x that

Ṽf (x, y) = xf(y) log f(y) + c7xf(y) +O
(
x1/2f(y)3/2

)
+O

(
x2(log x)−A

)
,

where A ≥ 1 is a fixed real number and c7 is yet another constant depending on f only.

We will combine their methods with those of Vaughan in order to prove an asymptotic
similar to that above for squarefree numbers.

1.3 Remarks on the Distribution of Squarefree Numbers

In contrast to the prime number theorem, the asymptotic (3) for the number of squarefree
integers not exceeding x is a straightforward and elementary calculation. We start from

On the Distribution of Squarefree Numbers in Arithmetic Progressions 3
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the identity
µ(n)2 =

∑
m2|n

µ(m), (10)

which follows from µ(m) being multiplicative. We plug this into the definition (1) of
Q(x; k, l), exchange the order of summation, and obtain

Q(x; k, l) =
∑
n≤x

n≡l (k)

∑
m2|n

µ(m)

=
∑

m≤x1/2
µ(m)

∑
n′≤x/m2

n′m2≡l (k)

1

=
∑

m≤x1/2

(k,m2)|l

µ(m)

(
x(m2, k)

m2k
+O (1)

)
.

The error term here is obviously O
(
x1/2

)
. Extending the summation over m to all

positive integers yields ∑
m≤x1/2

(k,m2)|l

µ(m)(m2, k)

m2k
= g(k, l) +O

(
x−1/2

)
,

where

g(k, l) =
∞∑

m=1
(m2,k)|l

µ(m)(m2, k)

m2k
. (11)

We obtain the claimed formula

Q(x; k, l) = g(k, l)x+O
(
x1/2

)
.

Write for short
Q(x) := Q(x; 1, 1).

Note that

g(1, 1) =
∞∑
m=1

µ(m)

m2
= ζ(2)−1 =

6

π2
,

which relates closely to the classic result that the probability of two random integer
being coprime is 6/π2.

For future reference we will prove a stronger error bound in the special case k = l.

Lemma 1.1 ([Vau05, Lemma 2.2]) Let k be an integer with k ≤ x. Then

Q(x; k, k) = g(k, k)x+O
(
σ0(k)(x/k)1/2

)
.

On the Distribution of Squarefree Numbers in Arithmetic Progressions 4
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Proof. Note first that the sum on the left is 0 if k is not squarefree, as is the main term
on the right. So assume that k is squarefree. Using (10) again, we obtain

Q(x; k, k) =
∑
n≤x/k

µ(nk)2

=
∑
n≤x/k

∑
m2|nk

µ(m)

=
∑
m,l

m2l≤x(m2,k)/k

µ(m).

Note that (m2, k) = (m, k) as k is squarefree. We now sort according to the values of
d = (m, k). This is again squarefree. We then conclude

Q(x; k, k) =
∑
d|k

∑
r2l≤x/dk

(r2d,k/d)=1

µ(rd)

=
∑
d|k

µ(d)
∑

r2l≤x/dk
(r,k)=1

µ(r).

We can then approximate the sum, and arrive at

Q(x; k, k) =
∑

r≤(x/dk)1/2

(r,k)=1

µ(r)
⌊ x

r2dk

⌋

= x
∞∑
r=1

(r,k)=1

µ(r)

r2dk
+O

(
(x/dk)1/2

)
= g(k, k)x+O

(
σ0(k)(x/k)1/2

)
.

More properties of g(k, l) will be presented in Lemmata 3.1 to 3.3. A more comprehensive
survey on the distribution of k-free numbers was given by F. Pappalardi [Pap05].

1.4 Results on the ζ-function

At the very core of analytic number theory we find Dirichlet series, in particular Rie-
mann’s ζ-function. This is defined by

ζ(s) :=
∞∑
n=1

n−s

On the Distribution of Squarefree Numbers in Arithmetic Progressions 5
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for <s > 1. The connection to prime numbers becomes obvious by the product repre-
sentation which dates back to L. Euler, and takes the shape

ζ(s) =
∏
p

(1− p−s)−1.

B. Riemann introduced in his influential paper from 1859 the idea of considering ζ(s)
on the complex plane, opening a whole new branch of number theory.

It is a standard result (cf. [Tit86, Thm. 2.1]) that ζ(s) has a meromorphic continuation
to the whole complex plane C with the only single pole at s = 1 which has residue 1.
This enables us to apply Perron’s formula. For that, let

L(a, s) :=
∞∑
n=1

a(n)n−s

be the Dirichlet series associated with the sequence a(n), which we assume to be abso-
lutely convergent for <s > σ0. Then Perron’s formula assures that∑

n≤x

?
a(n) =

1

2πi

∫
(ϑ)

L(a, s)xs
ds

s
,

where the star at the sum indicates that the last term needs to be modified if x is an
integer, and ϑ ≥ σ0. We will use a modified version of this formula in Lemma 6.1.

It turns out that for prime counting purposes, the best suitable function is the von
Mangoldt function

Λ(n) :=

{
log p, n = pk,

0, otherwise.

The associated Dirichlet series is

L(Λ, s) = −ζ
′(s)

ζ(s)
.

On applying Perron’s formula, we want to move the line of integration to the left, picking
up residues of the Dirichlet series in that area. The ζ-function is zero-free in the half-
plane <s > 1 by the Euler product, but is known to have infinitely many zeros with
0 < <s < 1. We will later make use of the fact that ζ(s) is zero-free for <s ≥ 1 − ε
(cf. [Tit86, Thm. 3.8]). This indeed is equivalent to the Prime Number Theorem, and was
first proved independently by J. Hadamard [Had96] and C. de la Vallée-Poussin
[dlVP96].

As we see, each of these zeros constitutes a pole of L(Λ, s), thus adding a residue to the
calculation. It is for this reason that we are interested in the distribution of the zeros
of ζ(s). Riemann conjectured in his paper that all zeros in the critical strip 0 ≤ <s ≤ 1
have <s = 1

2
, thus implying that the primes are “as evenly distributed as possible”.

On the Distribution of Squarefree Numbers in Arithmetic Progressions 6
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Regarding the Dirichlet series (5) associated to the characteristic function of the square-
free numbers we see why we can expect the error bound (6) for Q(x; k, l) under the
assumption of the Riemann hypothesis. However, over 150 years later, this still re-
mains unproven. Therefore we need to look at average results in order to gain the same
strength.

The statement of our main theorem and an outline of the proof are presented in the
next chapter.

On the Distribution of Squarefree Numbers in Arithmetic Progressions 7
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2 Outline of the Proof

The purpose of this chapter is to give an overview of the main ingredients of the proof,
along with a sketch of the methods to be applied. It also contains some of the most
important definitions and thus serves as a reference. A comprehensive summary of the
notation used along with further remarks is given at page 53.

We aim to combine (7) and (9). This yields our main subject of study.

Definition Let f ∈ Q[x] be an integer-valued polynomial of degree d ≥ 1 such that
f(y) ≥ 2 and f ′(y) ≥ 1 for all y ≥ 1. Then

Vf (x, y) :=
∑
k≤y

f ′(k)

f(k)∑
l=1

E(x; f(k), l)2. (12)

We will fix the polynomial f of degree d ≥ 1 for the remainder of the text, alongside
positive x and y which we assume to be sufficiently large and to satisfy the condition
f(y) ≤ x. Our aspiration is to prove the following asymptotic:

Theorem 2.1 Let x > 0 and y > 0 such that f(y) < x. Then

Vf (x, y) = Cfx
1/2f(y)3/2 +O

(
x1/4f(y)7/4

)
+O

(
xyd−1

)
+O

(
x3/2+ε

)
,

where Cf is a certain constant depending on f only.

Note that the main term is dominant for

max
{
x2/3+ε, xd/(d+2)

}
� f(y) ≤ x.

That is, for 1 ≤ deg f ≤ 4 the main term is dominant in the range

x2/3+ε � f(y) ≤ x,

and for deg f ≥ 5, it is dominant for

xd/(d+2) � f(y) ≤ x.

Most of the proof will be achieved by combining the methods of J. Brüdern and
T.D. Wooley [BW11] with those of R.C. Vaughan [Vau05], whose work itself relies
heavily on earlier papers [BGP+98, Vau98a, Vau98b]. Note that for the sake of con-
venience, we restricted our investigations to squarefree numbers, although the methods
presented could just as well be adapted for k-free numbers.

We will establish the asymptotic in Thm. 2.1 through a series of propositions. But first,

On the Distribution of Squarefree Numbers in Arithmetic Progressions 8
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let us take care of small values for y. From the error bound (4) we see immediately that

Vf (x, y)� x
∑
k≤y

f(k)f ′(k)� xf(y)2.

Now let y1 denote the unique y > 0 such that f(y) = x1/4. Hence

Vf (x, y) = V ′f (x, y) + Vf (x, y1) = V ′f (x, y) +O
(
x3/2

)
,

where we wrote

V ′f (x, y) :=
∑

y1<k≤y

f ′(k)

f(k)∑
l=1

E(x; f(k), l)2

for the truncated sum. The next step is then to isolate those sums that contribute the
main terms to Vf (x, y).

Proposition 2.2 We have

Vf (x, y) = ζ(2)−1xf(y) + 2S0(x, y)− x2Φf (y) +O
(
x3/2+ε

)
+O

(
xyd−1

)
,

where
S0(x, y) =

∑
y1<k≤y

f ′(k)
∑
n≤x

∑
m<n

m≡n (f(k))

µ(n)2µ(m)2, (13)

and
Φf (y) =

∑
y1<k≤y

f ′(k)
∑
r|f(k)

g(f(k), r)2ϕ(f(k)/r). (14)

Proving this requires only straightforward rearrangements which are presented in Chap-
ter 3. The asymptotic behaviour of Vf (x, y) is thus determined by S0(x, y) and Φf (y),
and is subject to cancellations in the terms of these sums. As we will see, this largely
depends on some arithmetic functions we want to define now.

Definition Let G(n) denote the multiplicative function defined by

G(pt) :=

{
−(p2 − 1)−1, t = 1, 2,

0, otherwise,
(15)

for prime powers pt. For integers q and h we define

wh(q) :=
1

q

q∑
a=1

cq(hf(a)), (16)

On the Distribution of Squarefree Numbers in Arithmetic Progressions 9
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where cq(n) denotes Ramanujan’s sum. We sum up these two functions in the series

W (h) :=
∞∑
q=1

G(q)2wh(q). (17)

With these means, we will then reduce S0(x, y) to another sum.

Proposition 2.3 We have

2S0(x, y) = ζ(2)−2
(
f(y1)

2Θf (x/f(y1))− f(y)2Θf (x/f(y))
)

+O
(
x3/2+ε

)
+O

(
xyd−1

)
,

where
Θf (H) =

∑
h≤H

W (h)

h
(H − h)2. (18)

These deductions involve the circle method and will be discussed in Chapter 4. The sum
Θf (H) will be analysed by the properties of the following analytic function:

Definition Let <s > 0. We then define

D(s) =
∞∑
n=1

W (n)n−s−1. (19)

We will see that this converges to an analytic function in the domain. Indeed we further
have:

Proposition 2.4 The function D(s) has a meromorphic continuation to the half-plane
<s > −2, where the only poles in <s ≥ −7

4
are single poles at s = 0 and s = −3

2
.

A simple application of Perron’s formula and the residue theorem then gives us the
asymptotic for S0(x, y).

Corollary 2.5 We have

2S0(x, y) = ζ(2)−2Γ0x
2 log(f(y)/f(y1))− ζ(2)−1xf(y) + Cfx

1/2f(y)3/2

+O
(
x1/4f(y)7/4

)
+O

(
x3/2+ε

)
+O

(
xyd−1

)
,

where Γ0 is a certain constant depending on f only.

These examinations are subject of Chapter 6. All that remains is then the analysis of
Φf (y), which will cancel the term containing Γ0.

On the Distribution of Squarefree Numbers in Arithmetic Progressions 10
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Proposition 2.6 We have

Φf (y) = ζ(2)−2Γ0 log (f(y)/f(y1)) +O
(
y−2d+1

)
.

The proof of this will be presented in Chapter 7. Combining Prop. 2.2 with Cor. 2.5
and Prop. 2.6 thus completes the proof of Thm. 2.1.

On the Distribution of Squarefree Numbers in Arithmetic Progressions 11
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3 Analysing Vf by Elementary Rearrangements

The first step of the proof simply consists of rearranging the sums in Vf (x, y), and
isolating those that contribute the main term. This requires only elementary methods
that are presented in this chapter.

So let us write out the definition (3) of E(x; k, l) and open the square in the definition
(12) of Vf (x, y). We obtain

V ′f (x, y) = S1(x, y)− 2xS2(x, y) + x2S3(y), (20)

where

S1(x, y) =
∑

y1<k≤y

f ′(k)

f(k)∑
l=1

∑
n≤x

n≡l (f(k))

∑
m≤x

m≡l (f(k))

µ(n)2µ(m)2,

S2(x, y) =
∑

y1<k≤y

f ′(k)

f(k)∑
l=1

g(f(k), l)Q(x; f(k), l),

and

S3(y) =
∑

y1<k≤y

f ′(k)

f(k)∑
l=1

g(f(k), l)2.

First notice in S1(x, y) that by summing over all residue classes, we eventually sum over
those values of n and m that are congruent modulo f(k). I. e.,

S1(x, y) =
∑

y1<k≤y

f ′(k)
∑
n≤x

∑
m≤x

m≡n (f(k))

µ(n)2µ(m)2.

Separating diagonal from off-diagonal terms hence yields

S1(x, y) =
∑

y1<k≤y

f ′(k)
∑
n≤x

µ(n)2 + 2
∑

y1<k≤y

f ′(k)
∑
n≤x

∑
m<n

m≡n (f(k))

µ(n)2µ(m)2.

We apply Euler’s summation formula (cf. [Brü95, (4.5)]) to the first sum, and obtain∑
y1<k≤y

f ′(k) =

∫ y

y1

f ′(t) dt+O

(∫ y

y1

|f ′′(t)| dt+ f ′(y1) + f ′(y)

)
= f(y) +O

(
yd−1

)
.

On the Distribution of Squarefree Numbers in Arithmetic Progressions 12
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Using the asymptotic (3) for Q(x) yields∑
n≤x

µ(n)2 = Q(x) = ζ(2)−1x+O
(
x1/2

)
.

On remembering the definition (13) of S0(x, y) we arrive at

S1(x, y) = ζ(2)−1xf(y) + 2S0(x, y) +O
(
xyd−1

)
+O

(
x1/2yd

)
. (21)

Before we proceed to analyse S2(x, y), we need some properties on the asymptotic density
g(k, l).

Lemma 3.1 The asymptotic density of Q(x; k, l) depends only on the greatest common
divisor of k and l rather than on l, i. e.,

g(k, l) = g(k, (k, l)).

Proof. This follows directly from (11) by the observation that thosem ∈ N with (m2, k) |
l are precisely those with (m2, k) | (k, l).

Lemma 3.2 ([Vau98b, Lemma 2.2]) Let k ∈ N and r | k. Then∑
t|k/r

µ(t)g(rt, rt) = g(k, r)ϕ(k/r).

Proof. We first show that

g(r, r) =

q∑
a=1
r|a

g(q, (q, a)) (22)

for q ≥ r. Sorting according to the residue classes of n modulo q yields

Q(x; r, r) =
∑
n≤x
r|n

µ(n)2 =

q∑
a=1
r|a

∑
n≤x

n≡a (q)

µ(n)2 =

q∑
a=1
r|a

Q(x; q, a).

Now with (2) and Lemma 3.1, we obtain

g(r, r) = lim
x→∞

Q(x; r, r)

x
=

q∑
a=1
r|a

lim
x→∞

Q(x; q, a)

x
=

q∑
a=1
r|a

g(q, a) =

q∑
a=1
r|a

g(q, (q, a))

On the Distribution of Squarefree Numbers in Arithmetic Progressions 13



3 Analysing Vf by Elementary Rearrangements

as claimed in (22). Using this identity with rt instead of r we find that

∑
t|k/r

µ(t)g(rt, rt) =
∑
t|k/r

µ(t)
k∑

a=1
rt|a

g(k, (k, a))

=

k/r∑
b=1

(b,k/r)=1

g(k, r)

= g(k, r)ϕ(k/r).

Lemma 3.3 ([Vau05, Lemma 2.4]) Let k ∈ N. Then

k∑
l=1

g(k, l)2 =
∑
r|k

g(k, r)2ϕ(k/r).

Proof. This follows immediately by using Lemma 3.1:

k∑
l=1

g(k, l)2 =
∑
r|k

k∑
l=1

(l,k)=r

g(k, (k, l))2 =
∑
r|k

g(k, r)2
k/r∑
l=1

(l,k/r)=1

1 =
∑
r|k

g(k, r)2ϕ(k/r).

Applying now Lemma 3.1 to S2(x, y) and sorting according to the values of the gcd, we
obtain

S2(x, y) =
∑

y1<k≤y

f ′(k)

f(k)∑
l=1

g(f(k), (f(k), l))Q(x; f(k), l)

=
∑

y1<k≤y

f ′(k)
∑
r|f(k)

g(f(k), r)

f(k)/r∑
l=1

(l,f(k)/r)=1

Q(x; f(k), lr).

Plugging in the definition (1) of Q(x; k, l) yields

S2(x, y) =
∑

y1<k≤y

f ′(k)
∑
r|f(k)

g(f(k), r)

f(k)/r∑
l=1

(l,f(k)/r)=1

∑
n≤x

n≡l (f(k)/r)

µ(n)2

=
∑

y1<k≤y

f ′(k)
∑
r|f(k)

g(f(k), r)
∑
n≤x

(n,f(k)/r)=1

µ(nr)2

=
∑

y1<k≤y

f ′(k)
∑
r|f(k)

g(f(k), r)
∑

t|f(k)/r

µ(t)
∑
n≤x/rt

µ(nrt)2.
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We can now apply Lemma 1.1 to the innermost sum. Thus∑
n≤x/rt

µ(nrt)2 = Q(x; rt, rt) = g(rt, rt)x+O
(
σ0(rt)(x/rt)

1/2
)
.

The error term then contributes to the sum

�
∑

y1<k≤y

f ′(k)
∑
r|f(k)

g(f(k), r)
∑

t|f(k)/r

σ0(rt)(x/rt)
1/2.

We have the obvious bound

Q(x; k, l) ≤
∑
n≤x

n≡l (k)

1 ≤ x

k
+ 1,

and hence by (2),

g(k, l) ≤ lim
x→∞

1 + x/k

x
=

1

k
.

This yields an error bounded by

� x1/2
∑

y1<k≤y

f ′(k)

f(k)

∑
l|f(k)

σ0(l)
2l−1/2 � x1/2 log y � x1/2+ε.

Applying Lemma 3.2, we obtain

S2(x, y) = x
∑

y1<k≤y

f ′(k)
∑
r|f(k)

g(f(k), r)2ϕ(f(k)/r) +O
(
x1/2+ε

)
.

Remembering the definition (14) of Φf (y), this finally yields

S2(x, y) = xΦf (y) +O
(
x1/2+ε

)
. (23)

For the analysis of S3(y) we simply apply Lemma 3.3, and obtain

S3(y) =
∑

y1<k≤y

f ′(k)
∑
r|f(k)

g(f(k), r)2ϕ(f(k)/r) = Φf (y). (24)

Now plugging the formulae (21), (23), and (24) for S1(x, y), S2(x, y), and S3(y), respec-
tively, into the expression (20) for V ′f (x, y) yields

Vf (x, y) = V ′f (x, y) +O
(
x3/2

)
= ζ(2)−1xf(y) + 2S0(x, y)− x2Φf (y) +O

(
x3/2+ε

)
+O

(
xyd−1

)
,

concluding the proof of Prop. 2.2. We can thus proceed with the analysis of S0(x, y).
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4 Analysing S0 by the Circle Method

The sum S0(x, y) is a classic object accessible by the Hardy–Littlewood circle method.
This first transforms the sum into an integral over the unit circle (usually parameterised
by the unit interval), and then partitions it into the major arcs (values close to certain
rationals) and the minor arcs. The hope is then that the major arcs, despite having
small content, contribute the main term to the sum, whereas the minor arcs can be
bound by a sufficiently small error term.

In order to apply the circle method to S0(x, y), we need two functions that help trans-
forming the sum into an integral.

Definition Let α ∈ R. Then

Tf (α) :=
∑

y1<k≤y

f ′(k)
∑

h≤x/f(k)

e(αhf(k)), (25)

and

U(α) :=
∑
n≤x

µ(n)2e(αn), (26)

where we wrote for short
e(α) := exp(2πiα).

Note that these functions as the linear combination of 1-periodic functions are 1-periodic
themselves.

By orthogonality it is then obvious that

S0(x, y) =

∫ 1

0

Tf (α)|U(α)|2 dα.

For the Farey dissection we need a parameter R > 0 to be chosen “small” in comparison
with x. It turns out that R = 1

2
x1/2 is a suitable choice for our purpose. In what follows,

we shall thus assume this value for R.

Definition For T > 0 let

MT (q, a) :=

{
α ∈ R : |qα− a| ≤ T

x

}
. (27)

The major arcs MT are the pointwise disjoint union of the MT (q, a) with 1 ≤ a ≤ q ≤ T
and (a, q) = 1. Accordingly, we define the minor arcs to be

mT := (T/x, 1 + T/x] \MT .
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4 Analysing S0 by the Circle Method

We will see that the value of Tf (α) on the minor arcs MR is not too large. More precisely
we have:

Lemma 4.1 Let R = 1
2
x1/2. Then

sup
α∈mR

|Tf (α)| � x

R
log x� x1/2+ε.

We will return to prove this in Chapter 5. Using the obvious bound∫ 1

0

|U(α)|2 dα =
∑
n≤x

µ(n)2 � x

we can conclude
S0(x, y) = SMR

(x, y) +O
(
x3/2+ε

)
, (28)

where we wrote

SMR
(x, y) =

∫
MR

Tf (α)|U(α)|2 dα =
∑
q≤R

q∑
a=1

(a,q)=1

∫ R/qx

−R/qx
Tf (β+a/q)|U(β+a/q)|2 dβ. (29)

The next step is to reduce U(α) to a simpler function.

Definition Let α ∈ R. Then
J(α) :=

∑
n≤x

e(nα). (30)

The following arithmetic function will play an important role as it encodes the behaviour
of g(k, l) with an exponential sum:

ν(q) :=

q∑
a=1

g(q, a)e(a/q). (31)

Henceforth, we want to work with

U∗(α; q, a) := ν(q)J(α− a/q) (32)

rather than U(α). It turns out that the difference

∆(α; q, a) :=

{
U(α)− U∗(α; q, a), α ∈MR(q, a),

0, α ∈ mR,
(33)

is rather small, and can thus be neglected asymptotically. Note that the arguments q and
a in U∗(α; q, a) and ∆(α; q, a) are actually implied by α ∈MR(q, a), and are occasionally
dropped for that reason.
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Rearranging the definition (33) of ∆(α; q, a) we obtain

|U(α)|2 = |U∗(α)|2 + 2<(U∗(α)∆(α)) + |∆(α)|2

= |U∗(α)|2 +O (|U∗(α)∆(α)|) +O
(
|∆(α)|2

)
,

where z denotes complex conjugation. We now want to present the rigorous bound of
∆(α; q, a) on the major arcs.

Lemma 4.2 ([BGP+98, Lemma 3.2]) Let T be a real number with 1 ≤ T ≤ 1
2
x1/2. Then∫

MT

|∆(α)|2 dα =
∑
q≤T

q∑
a=1

(a,q)=1

∫
MT

|∆(α; q, a)|2 dα� xεT 2.

A similar estimate holds for the cross-term.

Lemma 4.3 ([BGP+98, Lemma 4.2]) Let T be a real number with 1 ≤ T ≤ 1
2
x1/2. Then∫

MT

|U∗(α)∆(α)| dα =
∑
q≤T

q∑
a=1

(a,q)=1

∫
MT

|U∗(α; q, a)∆(α; q, a)| dα� x1/2+εT 3/4.

We can now infer bounds for the integrals that do not contribute to the main term.

Corollary 4.4 With R = 1
2
x1/2 we have the bounds∫

MR

Tf (α)|∆(α)|2 dα� x3/2+ε

and ∫
MR

Tf (α)|U∗(α)∆(α)| dα� x3/2+ε.

We will present these more technical proofs in Chapter 5. Applying then Corollary 4.4
to the definition (29) of SMR

(x, y) yields

SMR
(x, y) =

∑
q≤R

q∑
a=1

(a,q)=1

∫ R/qx

−R/qx
Tf (β + a/q)|U∗(β + a/q)|2 dβ +O

(
x3/2+ε

)
.

We thus return to the analysis of U∗(α; q, a). First, we will simplify the function ν(q).
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Lemma 4.5 ([Vau05, Lemma 2.5]) Let q ∈ N. Then

ν(q) = ζ(2)−1G(q),

where G(q) is the multiplicative function defined in (15).

Proof. By the equation (11) for g(k, l) and the definition (31) of ν(q), we find that

ν(q) =
∑
r|q

q∑
a=1

(a,q)=r

g(q, r)e(a/q)

=
∑
r|q

g(q, r)µ(q/r)

=
∑
r|q

µ(q/r)
∞∑

m=1
(m2,q)|r

µ(m)(m2, q)

m2q
.

Sorting according to values of the gcd yields

ν(q) =
∞∑

m=1
q|m2

µ(m)

m2
.

The sum is obviously zero if q is not cubefree, confirming the claimed identity. Assuming
now that q is cubefree we find the Euler product of the above as

ν(q) =
∏
p-q

(1− p−2) =
∏
p

(1− p−2)
∏
p|q

(1− p−2)−1 = ζ(2)−1G(q).

Hence the main term of SMR
(x, y) takes the shape

ζ(2)−2
∑
q≤R

G(q)2
q∑

a=1
(a,q)=1

∫ R/qx

−R/qx
Tf (β + a/q)|J(β)|2 dβ. (34)

We would now like to extend the range of integration to |β| ≤ 1
2
. Note that in the range

R/qx ≤ |β| ≤ 1
2
we have J(β)� |β|−1. Using

Tf (β)� x
∑

y1<k≤y

f ′(k)

f(k)
� x log x,
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we find that

ζ(2)−2
∑
q≤R

G(q)2
q∑

a=1
(a,q)=1

∫
R/qx≤|β|≤ 1

2

Tf (β + a/q)|J(β)|2 dβ

� x(log x)
∑
q≤x

G(q)2
q∑

a=1
(a,q)=1

∫ 1/2

R/qx

β−2 dβ

� x2

R
(log x)

∑
q≤x

G(q)2ϕ(q)� x2

R
log x� x3/2+ε.

So we can indeed extend the range of integration with acceptable errors. Using orthog-
onality we thus obtain for the integral∫ 1/2

−1/2
Tf (β + a/q)|J(β)|2 dβ =

∑
y1<k≤y

f ′(k)
∑

h≤x/f(k)

∑
n≤x

∑
m≤x

n−m=hf(k)

e

(
ahf(k)

q

)

=
∑

y1<k≤y

f ′(k)
∑

h≤x/f(k)

e

(
ahf(k)

q

)
(bxc − hf(k)).

Note that bxc = x + O (1), so we may replace bxc by x, introducing an error bounded
by

� x
∑

y1<k≤y

f ′(k)

f(k)
� x log x.

Plugging these results into the expression (34) for SMR
(x, y) yields

SMR
(x, y) =

∑
q≤R

G(q)2

ζ(2)2

q∑
a=1

(a,q)=1

∑
y1<k≤y

f ′(k)
∑

h≤x/f(k)

e

(
ahf(k)

q

)
(x− hf(k)) +O

(
x3/2+ε

)
.

Exchanging the order of summation and writing

cq(n) =

q∑
a=1

(a,q)=1

e

(
an

q

)

for Ramanujan’s sum, we obtain

SMR
(x, y) = ζ(2)−2M0(x, y) +O

(
x3/2+ε

)
, (35)

where
M0(x, y) =

∑
q≤R

G(q)2
∑

y1<k≤y

f ′(k)
∑

h≤x/f(k)

cq(hf(k))(x− hf(k)). (36)
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Define y(h) by means of the equation f(y(h)) = min{f(y), x/h}. This helps to exchange
the order of summation of h and k:

M0(x, y) =
∑
q≤R

G(q)2
∑

h≤x/f(y1)

∑
y1<k≤y(h)

f ′(k)cq(hf(k))(x− hf(k)).

Since cq(hf(k)) depends only on the residue class of f(k) modulo q and thus on the
residue class of k modulo q, we sort the summation according to these residue classes.

M0(x, y) =
∑
q≤R

G(q)2
∑

h≤x/f(y1)

q∑
a=1

cq(hf(a))
∑

y1<k≤y(h)
k≡a (q)

f ′(k)(x− hf(k)). (37)

We can now apply Euler’s summation formula to the innermost sum.

Lemma 4.6 ([BW11, Lemma 4.1]) Let f , x, y, and h as above. Then

∑
y1<k≤y(h)
k≡a (q)

f ′(k)(x− hf(k)) =
1

q

∫ f(y(h))

f(y1)

x− ht dt+O
(
xyd−1

)
+O

(
y2d−1h

)
.

Proof. Let F : [X, Y ] → R be a smooth function. For integers a and q with q 6= 0 we
have by Euler’s summation formula

∑
X<k≤Y
k≡a (q)

F (k) =
1

q

∫ Y

X

F (t) dt+ E, (38)

where the error term satisfies the bound

|E| ≤
∫ Y

X

|F ′(t)| dt+ |F (X)|+ |F (Y )|. (39)

So we now choose
F (t) = f ′(t)(x− ht)� xtd−1 + ht2d−1 (40)

for the function, together with X = y1 and Y = y(h) for the range. By substitution, we
obtain immediately ∫ y(h)

y1

f ′(t)(x− hf(t)) dt =

∫ f(y(h))

f(y1)

x− ht dt,

confirming the main term.

In order to examine the error term, we need the derivative

F ′(t) = f ′′(t)(x− hf(t))− hf ′(t)2 � xtd−2 + ht2d−2. (41)
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Using the bounds (40) for F (t) and (41) for F ′(t) in equation (39) for the error term,
we arrive at

E � xyd−1 + hy2d−1.

Combining this with Euler’s summation formula (38) concludes the proof.

Plugging Lemma 4.6 into (37) yields an error bounded by

�
∑
q≤R

G(q)2
∑

h≤x/f(y1)

qϕ(q)(xyd−1 + y2d−1h)� xyd−1.

On remembering the definition (16) of wh(q) and exchanging the order of summation we
find that

M0(x, y) =
∑
q≤R

G(q)2
∑

h≤x/f(y1)

wh(q)

∫ f(y(h))

f(y1)

x− ht dt+O
(
xyd−1

)
=

∑
h≤x/f(y1)

∫ f(y(h))

f(y1)

x− ht dt
∑
q≤R

G(q)2wh(q) +O
(
xyd−1

)
.

We now want to extend the summation over q to all natural numbers. For this, we first
need some properties of the function wh(q).

Lemma 4.7 ([BW11, Lemma 4.2]) Let h ∈ N be fixed. Then the function wh(q) as
defined in (16) is multiplicative of q. If further p is a prime, we have

wh(p) =

{
p− 1, p | h,
%(p)− 1, p - h,

and

wh(p
2) =


p2 − p, p2 | h,
p%(p)− p, p ‖ h,
%(p2)− %(p), p - h,

where %(m) denotes the number of solutions of the congruence f(a) ≡ 0 (m) with 0 ≤
a < m.

Proof. It is a well-known fact that cq(n) is a multiplicative function of q (cf. [HW79,
Thm. 272]). Moreover, the value of cq(n) only depends on the residue class of n modulo
q. So assume that q and q′ are coprime. Then we have

wh(qq
′) =

1

qq′

qq′∑
a=1

cqq′(hf(a)) =
1

qq′

qq′∑
a=1

cq(hf(a))cq′(hf(a)).
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Now we can apply the Chinese Remainder Theorem to the residue class of f(a) modulo
qq′, and obtain

wh(qq
′) =

(
1

q

q∑
a=1

cq(hf(a))

)
·

(
1

q′

q′∑
a=1

cq′(hf(a))

)
= wh(q)wh(q

′).

Hence we need to calculate the values at prime powers pt. Writing out the definitions
and completing Ramanujan’s sum yields

wh(p
t) =

1

pt

pt∑
a=1

pt∑
b=1

(b,pt)=1

e

(
bhf(a)

pt

)
=

1

pt

pt∑
a=1

 pt∑
b=1

e

(
bhf(a)

pt

)
−

pt−1∑
b=1

e

(
bhf(a)

pt−1

) .

Recall the basic exponential sum property

n∑
b=1

e

(
bq

n

)
=

{
n, n | q,
0, n - q,

which follows directly from the geometric series. As the function G(pt) is zero for t > 2
we are only interested in the values at p and p2. So using the above property we obtain

wh(p) =

 p∑
a=1

hf(a)≡0 (p)

1

− 1 =

{
p− 1, p | h,
%(p)− 1, p - h.

The same argument can be used to deduce that

wh(p
2) =

 p2∑
a=1

hf(a)≡0 (p2)

1

−
 p∑

a=1
hf(a)≡0 (p)

1

 =


p2 − p, p2 | h,
p%(p)− p, p ‖ h,
%(p2)− %(p), p - h.

Note that %(m) is multiplicative by the Chinese Remainder Theorem and that the num-
ber of solutions %(pl) for prime powers is bounded by %(pl) ≤ dl. Thus we infer that
the multiplicative function wh(q) is bounded by O ((q, h)qε) for cubefree q. In the non-
cubefree case the value of G(q) will vanish, establishing the same bound. Hence∑

q≤R

G(q)2wh(q) = W (h) +O
(
hεR−3

)
= W (h) +O

(
x−3/2hε

)
,

where W (h) is the series defined in (17). Obviously we have∫ f(y(h))

f(y1)

x− ht dt� f(y)x� x2.
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This yields

M0(x, y) =
∑

h≤x/f(y1)

W (h)

∫ f(y(h))

f(y1)

x− ht dt+O
(
x3/2+ε

)
+O

(
xyd−1

)
.

We now evaluate the integral by noting that the antiderivative of x− ht with respect to
t is t(x − 1

2
ht). Remember that f(y(h)) = f(y) for h ≤ x/f(y) and f(y(h)) = x/h for

h > x/f(y). Splitting the sum at h = x/f(y) we find that

M0(x, y) =
1

2

∑
h≤x/f(y)

W (h)

h

(
2xf(y)h− f(y)2h2 − 2xh+ h2 − (x− h)2

)
+

1

2
f(y1)

2
∑

h≤x/f(y1)

W (h)

h
(x/f(y1)− h)2 +O

(
x3/2+ε

)
+O

(
xyd−1

)
.

Using Θf (H) as defined in (18) we obtain

2M0(x, y) = f(y1)
2Θf (x/f(y1))− f(y)2Θf (x/f(y)) +O

(
x3/2+ε

)
+O

(
xyd−1

)
.

In view of the equations (28) and (35) connecting S0(x, y), SMR
(x, y), and M0(x, y), we

can justify the choice R = 1
2
x1/2 as claimed to conclude the proof of Proposition 2.3.

The next step is thus to analyse the asymptotic behaviour of Θf (H). But before we can
turn our attention to that, we need to catch up on the pending proofs of this chapter.
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5 Analysing the Minor and Major Arcs

This chapter is dedicated to the proofs of Lemmata 4.1 to 4.3 and Corollary 4.4 which
we left out in Chapter 4. We will start with the proofs of Lemmata 4.2 and 4.3, but
need some auxiliary results first.

Lemma 5.1 ([Gal70, Lemma 1]) Let an be a (complex) sequence and

A(α) :=
∑
n∈Z

ane(nα)

be an absolutely convergent exponential series. Let ϑ > 0. Then∫ 1/2ϑ

−1/2ϑ
|A(α)| dα�

∫ ∞
−∞

∣∣∣∣∣ϑ−1 ∑
t<n≤t+ϑ

an

∣∣∣∣∣
2

dt.

Proof. Define temporarily
Bϑ(t) = ϑ−1

∑
|n−t|≤ 1

2
ϑ

an.

The integral on the right hand side then becomes∫ ∞
−∞
|Bϑ(t)|2 dt.

Further put

Fϑ(t) =

{
ϑ−1, |x| ≤ 1

2
ϑ,

0, otherwise.

Then
Bϑ(t) =

∑
n∈Z

anFϑ(t− n).

Taking Fourier transforms, we obtain

B̂ϑ(t) = A(t) · F̂ϑ(t).

We assumed the series A(α) to be absolutely convergent, so Bϑ(t) is a bounded integrable
function, and hence square-integrable. We infer from Plancherel’s Theorem,∫ ∞

−∞
|Bϑ(t)|2 dt =

∫ ∞
−∞
|A(t)F̂ϑ(t)|2 dt. (42)

Note that
F̂ϑ(t) =

sin πϑt

πϑt
� 1,
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for |t| ≤ 1
2ϑ
, so we can conclude the claimed bound from (42).

Lemma 5.2 ([BGP+98, Lemma 3.1]) Let T > 0. Then∑
T<q≤2T

q|ν(q)|2 � T−1/2(log 2T )2,

and

∞∑
q=1

ϕ(q)|ν(q)|2 = ζ(2)−1.

Proof. By Lemma 4.5, ν(q) is a multiplicative function whose values we can easily cal-
culate by the means of G(q). With the Euler product we can give the estimate∑

q≤T

q3/2|ν(q)|2 ≤
∏
p≤T

(
1 + p3/2ν(p)2 + p3ν(p2)2

)
.

Using the definition (15) of G(q), we arrive at∑
T<q≤2T

q|ν(q)|2 � T−1/2
∏
p≤2T

(
1 +

2

p

)
� T−1/2(log 2T )2.

For the identity we again exploit Lemma 4.5 and the Euler product. We thus obtain

∞∑
q=1

ϕ(q)|ν(q)|2 = ζ(2)−2
∞∑
q=1

ϕ(q)|G(q)|2

= ζ(2)−2
∏
p

(
1 +

(p− 1) + (p2 − p)
(p2 − 1)2

)
= ζ(2)−2

∏
p

(
p2

p2 − 1

)
= ζ(2)−1.

Lemma 5.3 Let X, Y , α be real numbers such that X, Y ≥ 1, and |qα− a| ≤ q−1 with
(a, q) = 1. Then ∑

h≤X

min

{
XY

h
,

1

‖αh‖

}
�
(
XY

q
+X + q

)
log(2Xq).

Proof. This is Lemma 2.2 of Vaughan [Vau97].

We are now prepared to tackle the bounds for the integral over |∆(α)|2 and |U∗(α)∆(α)|
on the major arcs.
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Proof of Lemma 4.2. Define temporarily

L(ϑ; q, a) :=

∫ 1/2ϑ

−1/2ϑ
|∆(β + q/a; q, a)|2 dβ.

An inspection of the definition (33) of ∆(α; q, a) together with the definitions (26) of
U(α), (30) of J(α), and (32) of U∗(α; q, a) yields

∆(β + q/a; q, a) =
∞∑
n=1

u(n; q, a)e(nβ),

where we wrote

u(n; q, a) =

{
µ(n)2e(an/q)− ν(q), 1 ≤ n ≤ x,

0, otherwise.

Choosing 0 < ϑ < x we can apply Lemma 5.1, and obtain

L(ϑ; q, a)� ϑ−2
∫ ∞
−∞

∣∣∣∣∣ ∑
t<n≤t+ϑ

u(n; q, a)

∣∣∣∣∣
2

dt. (43)

Now we use (3) to obtain for positive z,

∑
n≤z

µ(n)2e(na/q) =

q∑
b=1

e(ab/q)
∑
n≤z

n≡b (q)

µ(n)2 =

q∑
b=1

e(ab/q)(g(q, b)z + E(z; q, a)).

Assume now a and q to be coprime. Then both a and ab run through a complete coset
representative modulo q. Moreover, by Lemma 3.1 the function g(q, b) depends only on
the gcd of q and b. Hence, with the definition (31) of ν(q),

q∑
b=1

e(ab/q)g(q, b) =

q∑
b=1

e(b/q)g(q, (q, b)) = ν(q). (44)

Thus for 0 < z ≤ x,∑
n≤z

u(n; q, a) = δ(z; q, a) + zν(q)− (z +O (1))ν(q) = δ(z; q, a) +O (ν(q)) ,

where

δ(z; q, a) :=

q∑
b=1

e(ab/q)E(z; q, a).
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Define now

z(t) =

{
t, 0 ≤ t ≤ x,

0, otherwise,

and

w(t) =


t+ ϑ, −ϑ < t ≤ x− ϑ,
x, x− ϑ < t ≤ x,

0, otherwise.

Then ∑
t<n≤t+ϑ

u(n; q, a) = δ(w(t); q, a)− δ(z(t); q, a) +O (ν(q))

for −ϑ < t ≤ x, whereas the sum is zero otherwise. Thus, with (43), we obtain

L(ϑ; q, a)� ϑ−2
∫ x

−ϑ
|ν(q)|2 + |δ(z(t); q, a)|2 + |δ(w(t); q, a)|2 dt

� ϑ−2
(
x |ν(q)|2 + ϑ |δ(x; q, a)|2 +

∫ x

0

|δ(t; q, a)|2 dt

)
. (45)

We now find∑
q≤T

q∑
a=1

(a,q)=1

∫ T/qx

−T/qx
|∆(β + q/a; q, a)|2 dβ =

∑
q≤T

q∑
a=1

(a,q)=1

L(qx/2T ; q, a)

� max
1≤T ′≤T

∑
T ′<q≤2T ′

q∑
a=1

(a,q)=1

L(qx/2T ; q, a)

� (log 2T ) max
1≤T ′≤T

Ψ(x, T, T ′), (46)

where

Ψ(x, T, T ′) :=
∑

T ′<q≤2T ′

q∑
a=1

(a,q)=1

L(T ′x/2T ; q, a).

Using again the orthogonality of the additive characters we have

q∑
a=1

|δ(z; q, a)|2 = q

q∑
b=1

|E(z; q, b)|2.
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We can now apply bound (45) for L(ϑ; q, a) and obtain with the definition (7) of V (x, y),

Ψ(x, T, T ′)� T 2

xT ′2

∑
T ′<q≤2T ′

q|ν(q)|2 +
T

x
V (x, 2T ′) +

T 2

x2T ′

∫ x

0

V (t, 2T ′) dt.

Using the estimate (8) for V (x, y) and applying Lemma 5.2, we find that

Ψ(x, T, T ′)� x−1+εT 2T ′−5/2 + xεTT ′ + xεT 2.

Hence
max

1≤T ′≤T
Ψ(x, T, T ′)� x−1+εT 2 + xεT 2 � xεT 2.

Considering the bound (46), this concludes the proof.

The corresponding proof for the integral over |U∗(α)∆(α)| on the major arcs works in a
similar fashion.

Proof of Lemma 4.3. Let 1 ≤ T ′ ≤ T , and define MT ′(q, a) and MT ′ accordingly to
(27). Define further

NT ′ := M2T ′ \MT ′ . (47)

We perform a dyadic dissection and apply the Cauchy-Schwarz inequality to obtain

∑
q≤T

q∑
a=1

(a,q)=1

∫
MT

|U∗(α; q, a)∆(α; q, a)| dα� (log 2T ) max
1≤T ′≤T

(
U1(T

′)1/2U2(T
′)1/2

)
, (48)

where

U1(T
′) =

∫
NT ′

|U∗(α; q, a)|2 dα,

and

U2(T
′) =

∫
M2T ′

|∆(α; q, a)|2 dα.

By the definitions (32) of U∗(α; q, a) and (47) of NT ′ we find that

U1(T
′)�

∑
T ′<q≤2T ′

ϕ(q)|ν(q)|2
∫ 1/2

−1/2
|J(β)|2 dβ +

∑
1≤q≤T ′

ϕ(q)|ν(q)|2
∫ 1/2

T ′/qx

|J(β)|2 dβ.

We can now apply Lemma 5.2, and obtain

U1(T
′)� xT ′−1/2+ε.
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A direct application of Lemma 4.2 yields

U2(T
′)� xεT ′2.

Plugging these bounds into (48) we arrive at

∑
q≤T

q∑
a=1

(a,q)=1

∫
MT

|U∗(α; q, a)∆(α; q, a)| dα� (log 2T ) max
1≤T ′≤T

(
x1/2+εT ′3/4+ε

)
� x1/2+εT 3/4,

concluding the proof.

Before we can proceed with appropriate bounds for Tf (α), we split the outer summation
at f(k) = x1/2, and sort according to whether the index is divisible by a positive integer
q or not. Subsequently, we define the functions

T ′f,q(α) :=



∑
y1<k≤y
q|f(k)

f ′(k)
∑

h≤x/f(k)
e(αhf(k)), f(y) ≤ x1/2,

∑
k>y1

f(k)≤x1/2
q|f(k)

f ′(k)
∑

h≤x/f(k)
e(αhf(k))

+
∑

h≤x1/2

q|h

∑
k≤y(h)

f(k)>x1/2

f ′(k)e(αhf(k)), f(y) > x1/2,

(49)

and

T ′′f,q(α) :=



∑
y1<k≤y
q-f(k)

f ′(k)
∑

h≤x/f(k)
e(αhf(k)), f(y) ≤ x1/2,

∑
k>y1

f(k)≤x1/2
q-f(k)

f ′(k)
∑

h≤x/f(k)
e(αhf(k))

+
∑

h≤x1/2

q-h

∑
k≤y(h)

f(k)>x1/2

f ′(k)e(αhf(k)), f(y) > x1/2,

(50)

where we recall that y(h) is defined by the condition f(y(h)) = min{f(y), x/h}. Note
that T ′′f,q(α) = 0 for q = 1. It is then obvious that

Tf (α) = T ′f,q(α) + T ′′f,q(α) (51)

for any q ∈ N. So it suffices to find the necessary upper bounds separately for T ′f,q(α)
and T ′′f,q(α) for an arbitrary q.

With these means we can find a bound for Tf (α) that will allow us a uniform bound on
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the minor arcs.

Lemma 5.4 ([Vau05, Lemma 2.10]) Let (a, q) = 1 and |qα− a| ≤ q−1. Then

Tf (α)� (xq−1 + q) log x.

Proof. This is trivial when q > x as we have the straightforward bound

Tf (α)� x
∑
k≤y

f ′(k)

f(k)
� x log x.

So let q ≤ x. Using (51) with q = 1, we obtain

Tf (α) = T ′f,1(α)�
∑

f(k)≤x1/2
min

{
x
f ′(k)

f(k)
,
f ′(k)

‖f(k)α‖

}
+
∑
h≤x1/2

min

{
x

h
,

1

‖hα‖

}

�
∑
u≤x1/2

min

{
x

u
,

1

‖uα‖

}
.

An application of Lemma 5.3 yields

Tf (α)� (xq−1 + x1/2 + q) log x,

and the lemma follows immediately.

We now have no problem to infer the required bound for Tf (α) on the minor arcs.

Proof of Lemma 4.1. Let α ∈ mR. Then we have either ‖qα‖ > R/x or q > R. By
Dirichlet’s theorem on diophantine approximation we can apply Lemma 5.4, and imme-
diately obtain

sup
mR

|Tf (α)| � x

R
log x� x1/2+ε.

It remains to prove the bounds for the integrals in Cor. 4.4. But first, we need to find
bounds for T ′f,q(α) and T ′′f,q(α) on the major arcs.

Lemma 5.5 ([Vau05, Lemma 2.11]) Let q ∈ N and α = a/q + β with |β| ≤ 1/(2x1/2).
Then

T ′f,q(α) = T ′f,q(β)� x log x

q + qx|β|
.

Proof. The identity T ′f,q(α) = T ′f,q(β) is obvious from the properties of the exponential
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function. We first establish the equation

T ′f,q(β)�
∑

u≤x1/2/q

x

qu+ x ‖quβ‖
(52)

for an arbitrary β. From the definition (49) of T ′f,q(α) we find that

T ′f,q(β)�
∑

f(k)≤x1/2/q

min

{
xf ′(k)

qf(k)
,

f ′(k)

‖qf(k)β‖

}
+

∑
h≤x1/2/q

min

{
x

qh
,

1

‖qhβ‖

}

�
∑

u≤x1/2/q

min

{
x

qu
,

1

‖quβ‖

}
.

Note that for η, ϑ > 0 we have

min{1/η, 1/ϑ} ≤ 2

η + ϑ
.

This concludes the proof of (52).

In order to prove the lemma we note that for u ≤ x1/2/q and |β| ≤ 1/(2x1/2), we have
|quβ| ≤ 1

2
. We can thus replace ‖quβ‖ by |quβ| in (52), and immediately obtain

T ′f,q(β)� x

q + qx|β|
∑

u≤x1/2/q

1

u
� x log x

q + qx|β|
.

We can give a similar bound for T ′′f,q(α) on MR.

Lemma 5.6 ([Vau05, Lemma 2.12]) Let (q, a) = 1 and |qα− a| ≤ 1/(2x1/2). Then

T ′′f,q(α)�
(
min{f(y), x1/2}+ q

)
log x.

Proof. Again, this is trivial for q > x. So let q ≤ x. By the definition (50) of T ′′f,q(α), we
then obtain

T ′′f,q(α)�
∑

f(k)≤min{f(y),x1/2}
q-f(k)

f ′(k)

‖f(k)α‖
+

∑
h≤min{f(y),x1/2}

q-h

1

‖hα‖

�
∑

u≤min{f(y),x1/2}
q-u

1

‖uα‖
. (53)

We have the general inequality

‖uα‖ ≥ ‖ua/q‖ − |u(α− a/q)|.
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By the definition (50) of T ′′f,q(α), we have q 6= u, and so

‖ua/q‖ ≥ 1

q
.

Moreover, we have u ≤ x1/2 by (53) and |qα− a| ≤ 1/(2x1/2) by assumption. Hence

|u(α− a/q)| ≤ 1/(2q).

Everything combined, we arrive at

T ′′f,q(α)�
∑

u≤min{f(y),x1/2}
q-u

1

‖ua/q‖
�
(
min{f(y), x1/2}q−1 + 1

) q−1∑
r=1

1

‖ra/q‖
.

On noting that
q−1∑
r=1

1

‖ra/q‖
� q log x,

we conclude the proof.

Finally, we are able to use Lemmata 4.2, 4.3, 5.5, and 5.6 to bound the error terms of
SMR

(x, y).

Proof of Cor. 4.4. In light of equation (51) splitting Tf (α) into T ′f,q(α) and T ′′f,q(α), we
need to examine the four integrals∫

MR

T ′f,q(α)|∆(α)|2 dα,

∫
MR

T ′′f,q(α)|∆(α)|2 dα,∫
MR

T ′f,q(α)|U∗(α)∆(α)| dα,
∫
MR

T ′′f,q(α)|U∗(α)∆(α)| dα,

and establish that each of them is O
(
x3/2+ε

)
.

We start by noting that for the choice R = 1
2
x1/2 we can apply Lemma 5.6 to the major

arcs, and obtain
sup
α∈MR

|T ′′f,q(α)| � x1/2 log x.

Plugging now R into Lemmata 4.2 and 4.3 immediately establishes the desired bound
in these cases.

The integrals containing T ′f,q(α) require a little more work as we need to perform a
dyadic dissection. For this purpose define

M0(1, 1) := {α ∈ R : |α− 1| ≤ 1/x} .
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For j ∈ N and q ≤ 2j−1 define

Mj(q, a) :=
{
α ∈ R : 2j−1/x < |qα− a| ≤ 2j/x

}
,

and for 2j−1 < q ≤ 2j define

Mj(q, a) :=
{
α ∈ R : |qα− a| ≤ 2j/x

}
.

Now choose J such that 2J−1 < R ≤ 2J . We chose this definition such that for any
coprime a and q with 1 ≤ a ≤ q ≤ R, the union of the Mj(q, a) with 0 ≤ j ≤ J and
q ≤ 2j contains MR(q, a) as defined in (27). We further define Mj to be the union of the
Mj(q, a) with 1 ≤ a ≤ q ≤ 2j and (a, q) = 1. Then the union of the Mj with 0 ≤ j ≤ J
contains MR.

We can now apply Lemma 5.5 to α ∈Mj(q, a) with 1 ≤ a ≤ q ≤ 2j and (a, q) = 1, and
obtain

T ′f,q(α)� 2−jx log x. (54)

An application of Lemma 4.2 yields

∑
q≤2j

q∑
a=1

(a,q)=1

∫
Mj(q,a)

|∆(α; q, a)|2 dα� xε22j.

Combining this with (54), we find that

∑
q≤2j

q∑
a=1

(a,q)=1

∫
Mj(q,a)

T ′f,q(α)|∆(α; q, a)|2 dα� x1+ε2j.

We can now sum this result over all j with 0 ≤ j ≤ J , and arrive at∫
MR

T ′f,q(α)|∆(α; q, a)|2 dα� x1+ε
∑

0≤j≤J

2j � x1+ε2J � x1+εR� x3/2+ε,

where we used that 2J−1 < R ≤ 2J .

Similarly, we can apply Lemma 4.3 to Mj(q, a), yielding

∑
q≤2j

q∑
a=1

(a,q)=1

∫
Mj(q,a)

|U∗(α; q, a)∆(α; q, a)| dα� x1/2+ε23j/4.

Introducing the bound (54) again, we obtain

∑
q≤2j

q∑
a=1

(a,q)=1

∫
Mj(q,a)

T ′f,q(α)|U∗(α; q, a)∆(α; q, a)| dα� x3/2+ε2−j/4.
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We sum over all j, and conclude finally∫
MR

T ′f,q(α)|U∗(α; q, a)∆(α; q, a)| dα� x3/2+ε
∑

0≤j≤J

(2−1/4)j � x3/2+ε.

We can thus turn our attention to the analysis of Θf (H) at last.
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6 Analysing Θf by Complex Analysis

We will deduce the asymptotic behaviour of Θf (H) by the means of the associated
Dirichlet series D(s) defined in (19). We will use a modified version of Perron’s formula
to obtain information about Θf (H) from D(s).

Lemma 6.1 (Perron’s Formula) Let a(n) be an arithmetic function, and

L(a, s) =
∞∑
n=1

a(n)n−s

the associated Dirichlet series. If L(a, s) converges absolutely for <s > σ > 0 and
x ∈ R>0 \ N, then ∑

n≤x

a(n)(x− n)2 =
1

πi

∫
(ϑ)

L(a, s)xs+2

s(s+ 1)(s+ 2)
ds,

where ϑ > σ and the integration ranges from ϑ− i∞ to ϑ+ i∞.

Proof. We will only sketch the proof as the details should be familiar. By absolute
convergence of L(a, s) we can exchange summation and integration, and obtain∫

(ϑ)

(
∞∑
n=1

a(n)n−s

)
xs+2

s(s+ 1)(s+ 2)
ds =

∞∑
n=1

a(n)x2
∫
(ϑ)

(x
n

)s ds

s(s+ 1)(s+ 2)
.

There are two cases to be checked. Let first x/n < 1. Consider integration along the
rectangle with the corners ϑ± iT and ϑ+S± iT , where S, T > 0. As the integrand has
no poles inside this area, we conclude by the residue theorem∫

�

(x
n

)s ds

s(s+ 1)(s+ 2)
= 0.

Since x/n < 1 the term (x/n)s will vanish as we let s tend to infinity. Thus we can
extend the integration to infinity by letting S tend to infinity, where the integral from
ϑ+ S + iT to ϑ+ S − iT will tend to zero. Likewise, we can extend T to infinity where
the integrals from ϑ± iT to ∞± iT will vanish. We obtain∫

(ϑ)

(x
n

)s ds

s(s+ 1)(s+ 2)
= 0

for n > x.

Let now x/n > 1. Here, we consider integration along the rectangle with the corners
ϑ ± iT and ϑ − S ± iT , where S, T > 0. For S large enough, the integrand has single
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poles at s = 0, s = −1, and s = −2 inside this area. Hence

1

2πi

∫
�

(x
n

)s ds

s(s+ 1)(s+ 2)
= R(0) +R(−1) +R(−2),

where R(s) denotes the residue of the integrand at s. We calculate

R(0) =
1

2
, R(−1) = −n

x
, R(−2) =

n2

2x2
.

With the same argument as above we let S and T tend to infinity, and conclude

1

πi

∫
(ϑ)

(x
n

)s ds

s(s+ 1)(s+ 2)
=
(

1− n

x

)2
for n < x. Assembling these results proves the claimed identity. Note that we excluded
the case x ∈ N for technical convenience. In fact, we could obtain a similar formula for
x ∈ N where the last term in the sum over n needs to be modified. However, as we are
only interested in the asymptotic behaviour, we chose not to include this case here.

Write now for short
IH(s) =

D(s)Hs+2

s(s+ 1)(s+ 2)
. (55)

Note that D(s) is the Dirichlet series associated toW (n)/n, so we can apply Lemma 6.1,
and gain immediately that

Θf (H) =
1

πi

∫
(2)

IH(s) ds, (56)

where the line of integration could be along any ϑ > 0. This equation constitutes our
interest in D(s) – we will later gain an asymptotic for Θf (H) through the residues of
IH(s). In order to calculate these, we need some relations connecting D(s) to ζ(s) which
will also prove the meromorphic behaviour claimed in Prop. 2.4. Let us first take a look
at W (h). By Lemma 4.7, wh(q) is multiplicative as a function of q. Hence W (h) can be
expanded as an Euler product of the form

W (h) =
∏
p

∞∑
l=0

G(pl)2wh(p
l)

=
∏
p

(
1 +

wh(p) + wh(p
2)

(p2 − 1)2

)
=
∏
p-h

P−10 ·
∏
p‖h

P1 ·
∏
p2|h

P2,
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where

P0(p) = P0 =

(
1 +

%(p2)− 1

(p2 − 1)2

)−1
= 1− %(p2)− 1

p4 − 2p2 + %(p2)
= 1 +O

(
p−4
)
,

P1(p) = P1 = 1 +
p%(p)− 1

(p2 − 1)2
= 1 +O

(
p−3
)
,

and

P2(p) = P2 = 1 +
1

p2 − 1
= 1 +O

(
p−2
)
.

Note that we can give these bounds since %(pl) ≤ dl for primes p. From the Euler
product we deduce that W (h)/W (1) is multiplicative with

W (h)

W (1)
=
∏
p‖h

P0P1 ·
∏
p2|h

P0P2.

In turn, we can find that

D(s)

W (1)
=
∞∑
n=1

W (n)

W (1)
n−s−1 =

∏
p

Dp(s),

where the Euler factor is

Dp(s) = 1 + P0P1p
−s−1 + P0P2

p−2s−2

1− p−s−1
.

Writing ξ = p−s−1 we can express the Euler factor as

Dp(s) = 1 + P0P1ξ + P0P2
ξ2

1− ξ
.

With these means we find the relations

(1− ξ)Dp(s) = 1 + (P0P1 − 1)ξ + P0(P2 − P1)ξ
2,(

1− ξ2/p2
)

(1− ξ)Dp(s) = 1 + (P0P1 − 1)ξ + (p2P0(P2 − P1)− 1)
ξ2

p2

− (P0P1 − 1)
ξ3

p2
− P0(P2 − P1)

ξ4

p2
,

and

(1− ξ2/p2)(1− ξ)
1− ξ4/p4

Dp(s) = 1 +
ξ(P0P1 − 1)

1 + ξ2/p2
+

ξ2/p2

1 + ξ2/p2
(
p2P0(P2 − P1)− 1

)
.
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This motivates the definitions

E1(s) :=
∏
p

(
1 + (P0P1 − 1)p−s−1 + P0(P2 − P1)p

−2s−2) ,
E2(s) :=

∏
p

(
1 + (P0P1 − 1)p−s−1 + (p2P0(P2 − P1)− 1)p−2s−4

−(P0P1 − 1)p−3s−5 − P0(P2 − P1)p
−4s−6) ,

and

E3(s) :=
∏
p

(
1 +

ps+3(P0P1 − 1)

p2s+4 + 1
+
p2P0(P2 − P1)− 1

p2s+4 + 1

)
.

We obtain the functional equations

D(s)

W (1)
=


ζ(s+ 1)E1(s),

ζ(s+ 1)ζ(2s+ 4)E2(s),
ζ(s+1)ζ(2s+4)

ζ(4s+8)
E3(s).

(57)

A closer look at P0, P1, and P2 reveals that

P0P1 =
p4 − 2p2 + p%(p)

p4 − 2p2 + %(p2)
= 1 +

p%(p)− %(p2)

p4 − 2p2 + %(p2)
= 1 +O

(
p−3
)
,

P0(P2 − P1) =
p2 − p%(p)

p4 − 2p2 + %(p2)
= O

(
p−2
)
,

and

p2P0(P2 − P1)− 1 =
−p3%(p) + 2p2 + %(p2)

p4 − 2p2 + %(p2)
= O

(
p−1
)
.

Hence

E1(s) :=
∏
p

(
1 +O

(
p−s−4

)
+O

(
p−2s−4

))
,

E2(s) :=
∏
p

(
1 +O

(
p−s−4

)
+O

(
p−2s−5

)
+O

(
p−3s−8

)
−O

(
p−4s−8

))
,

and

E3(s) :=
∏
p

(
1 +O

(
p−s−4

)
+O

(
p−2s−5

))
,

and so E1(s), E2(s), and E3(s) converge absolutely and are analytic in the half-plane
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<s > −3
2
, <s > −7

4
, and <s > −2, respectively. The relations (57) yield thus a

meromorphic continuation of D(s) to the half plane <s > 2. In particular, D(s) is
meromorphic on the half-plane <s ≥ −7

4
with the only single poles at s = 0 and s = −3

2
,

proving Prop. 2.4.

We can now go back to (56). By Prop. 2.4 we can move the line of integration to ϑ = −7
4
,

picking up the residues of IH(s) at s = 0, s = −1, and s = −3
2
. Writing R(0), R(−1),

and R(−3/2) for the residues at s = 0, s = −1, and s = −3
2
, respectively, we can

conclude by the residue theorem that

1

2πi

(∫ 2+iT

2−iT
+

∫ − 7
4
+iT

2+iT

+

∫ − 7
4
−iT

− 7
4
+iT

+

∫ 2−iT

− 7
4
−iT

)
IH(s) ds = R(0) +R(−1) +R(−3/2).

Invoking standard estimates (cf. [Tit86, Ch. V]) on the ζ-function in the functional
equations (57), we can extend T to infinity. In light of (56), this yields

Θf (H) = 2R(0) + 2R(−1) + 2R(−3/2) +
1

πi

∫
(−7/4)

IH(s) ds. (58)

Another standard estimates gives us as a bound for the integral∫
(−7/4)

IH(s) ds� H1/4.

We thus need the values of the residues of IH(s) for an asymptotic of Θf (H).

Lemma 6.2 With notation as above we have for the residues of IH(s):

(i) R(0) = 1
2
Γ0H

2 logH + Γ′0H
2, where

Γ0 = W (1)E1(0)

and

Γ′0 =
1

2
γW (1)E1(0) +

1

2
W (1)E ′1(0)− 3

4
W (1)E1(0).

(ii) R(−1) = 1
2
ζ(2)H.

(iii) R(−3/2) = Γ−3/2H
1/2, where

Γ−3/2 =
8

3
ζ(−1/2)W (1)E2(−3/2).
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Proof. (i) We will need the expansion (cf. [Tit86, (2.1.16)]),

ζ(s+ 1)

s
=

1

s2
+
γ

s
+O (1) , (59)

where γ is the Euler–Mascheroni constant. From Prop. 2.4 we know that D(s) has
a single pole at s = 0. This implies that IH(s) has a double pole there. Hence

R(0) = lim
s→0

d

ds

(
s2IH(s)

)
.

Using the first equation in (57) together with the expansion (59) we obtain

s2IH(s) =
(
1 + γs+O

(
s2
))W (1)E1(s)H

s+2

(s+ 1)(s+ 2)
.

The derivative with respect to s is then

d

ds

(
s2IH(s)

)
= (γ +O (s))W (1)E1(s)H

s+2(s+ 1)−1(s+ 2)−1

+
(
1 + γs+O

(
s2
))
W (1)Hs+2(s+ 1)−2(s+ 2)−2

· ((E ′1(s) + E1(s) logH) (s+ 1)(s+ 2)− E1(s)(2s+ 3)) .

We conclude
R(0) =

1

2
Γ0H

2 logH + Γ′0H
2,

where

Γ0 = W (1)E1(0),

and

Γ′0 =
1

2
γW (1)E1(0) +

1

2
W (1)E ′1(0)− 3

4
W (1)E1(0).

(ii) As D(s) is analytic in a neighbourhood of s = −1, we find that

R(−1) = lim
s→−1

(s+ 1)IH(s).

Using again the first relation in (57) this yields

(s+ 1)IH(s) =
W (1)ζ(s+ 1)E1(s)H

s+2

s(s+ 2)
.
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Noting that ζ(0) = −1
2
we arrive at

R(−1) =
1

2
Γ−1H,

where

Γ−1 = W (1)E1(−1)

=
∏
p

P−10 (1 + (P0P1 − 1) + P0(P2 − P1))

=
∏
p

P2 =
∏
p

1

1− p−2
= ζ(2).

(iii) Again, IH(s) has a single pole at s = −3
2
. Thus, using the second equation in (57)

together with the fact that

lim
s→− 3

2

(
s+

3

2

)
ζ(2s+ 4) = 1,

we conclude
R(−3/2) = lim

s→− 3
2

(
s+

3

2

)
IH(s) = Γ−3/2H

1/2,

where
Γ−3/2 =

8

3
ζ(−1/2)W (1)E2(−3/2).

Before we proceed, we will take a closer look to the constant Γ0. Writing out the
definitions of W (1) and E1(0), and sorting according to prime powers yields

Γ0 =
∏
p

p6 − 2p4 + p2 + p2%(p)− p%(p) + p2%(p2)− p%(p2)

p2(p2 − 1)2

=
∏
p

(
1 +

%(p)(p− 1)

p(p2 − 1)2
+
%(p2)(p2 − p)
p2(p2 − 1)2

)
.

We can then transform the product back into the sum

Γ0 =
∞∑
n=1

ϕ(n)G(n)2
%(n)

n
. (60)

In this form, the constant will reappear in Chapter 7.

All we need to do now is to plug the values of the residues provided by Lemma 6.2 into
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equation (58). This yields the asymptotic

Θf (H) = Γ0H
2 logH + 2Γ′0H

2 + ζ(2)H + 2Γ−3/2H
1/2 +O

(
H1/4

)
.

Combining this with Prop. 2.3 concludes the proof of Cor. 2.5, where

Cf = −2ζ(2)−2Γ−3/2 = −16ζ(−1/2)

3ζ(2)2
W (1)E2(−3/2). (61)

Note that
ζ(−1/2) = −0.207886224977355 . . .

and thus the numerical value of the constant is positive.

What remains now is to analyse Φf (y).
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7 Analysing Φf by Multiplicative Number Theory

The final step is to analyse the asymptotic behaviour of Φf (y). As it turns out, this
depends crucially on the constant Γ0 in the form of (60). But first, we need to rearrange
the innermost sum of Φf (y) in (14) to connect it to the function G(n) as defined in (15).

Lemma 7.1 ([Vau98b, Lemma 2.4]) Let k ∈ N. Then∑
r|k

g(k, r)2ϕ(k/r) = ζ(2)−2k−1
∑
r|k

ϕ(r)G(r)2.

Proof. We will evaluate

λ = lim
x→∞

x−2
k∑
l=1

∣∣∣∣∣∑
n≤x

µ(n)2e(ln/k)

∣∣∣∣∣
2

in two ways. First, we exploit orthogonality of the additive characters, and obtain

k∑
l=1

∣∣∣∣∣∑
n≤x

µ(n)2e(ln/k)

∣∣∣∣∣
2

= k
∑
n≤x

∑
m≤x

n≡m (k)

µ(n)2µ(m)2

= k
k∑
l=1

 ∑
n≤x

n≡l (k)

µ(n)2


2

= k
k∑
l=1

Q(x; k, l)2.

Thus, with (2) and Lemma 3.3,

λ = k
k∑
l=1

lim
x→∞

Q(x; k, l)2

x2
= k

k∑
l=1

g(k, l)2 = k
∑
r|k

g(k, r)2ϕ(k/r).

On the other hand, by sorting according to the divisors of k, we have

k∑
l=1

∣∣∣∣∣∑
n≤x

µ(n)2e(ln/k)

∣∣∣∣∣
2

=
∑
r|k

r∑
b=1

(b,r)=1

∣∣∣∣∣∑
n≤x

µ(n)2e(bn/r)

∣∣∣∣∣
2

=
∑
r|k

r∑
b=1

(b,r)=1

|U(b/r)|2.

We now need
lim
x→∞

x−1U(b/r) = ν(r) (62)

for coprime b and r. So let us write out the definition (26) of U(α) and sort according
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to the residue classes of n modulo r:

U(b/r) =
r∑

a=1

∑
n≤x

n≡a (r)

µ(n)2e(bn/r) =
r∑

a=1

e(ab/r)Q(x; r, a).

Using once more (2) we obtain

lim
x→∞

x−1U(b/r) =
r∑

a=1

e(ab/r) lim
x→∞

Q(x; r, a)

x
=

r∑
a=1

g(r, a)e(ab/r).

Since we assumed b and r to be coprime both a and ab run through a complete coset
representative modulo r. Moreover, by Lemma 3.1 the function g(r, a) depends only on
the gcd of r and a. Hence, with the definition (31) of ν(r),

lim
x→∞

x−1U(b/r) =
r∑

a=1

g(r, a)e(a/r) = ν(r),

confirming (62). Thus

λ =
∑
r|k

r∑
b=1

(b,r)=1

lim
x→∞

|U(b/r)|2

x2
=
∑
r|k

|ν(r)|2ϕ(r).

The claimed identity then follows directly from Lemma 4.5.

Plugging now Lemma 7.1 into the definition (14) of Φf (y) yields

Φf (y) = ζ(2)−2
∑

y1<k≤y

f ′(k)

f(k)

∑
r|f(k)

ϕ(r)G(r)2.

Define temporarily

Φ′f (y) =
∑
k≤y

f ′(k)

f(k)

∑
r|f(k)

ϕ(r)G(r)2. (63)

We will handle the factor f ′(k)/f(k) by summation by parts. Hence we first need to
examine the sum without this factor.

Lemma 7.2 Let k ∈ N. Then∑
k≤y

∑
r|f(k)

ϕ(r)G(r)2 = Γ0y + c̃f +O
(
y−2d+1

)
,

where c̃f is a constant depending on f only.
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Proof. We first exchange the order of summation and obtain∑
k≤y

∑
r|f(k)

ϕ(r)G(r)2 =
∑
r≤f(y)

ϕ(r)G(r)2
∑
k≤y

f(k)≡0 (r)

1

=
∑
r≤f(y)

ϕ(r)G(r)2%(r)
(y
r

+O (1)
)
.

The error here is bounded by

�
∑
r≤f(y)

ϕ(r)G(r)2%(r) = c̃f +O
(
f(y)−2

)
.

We extend the summation over r to infinity, and obtain∑
r≤f(y)

ϕ(r)G(r)2
%(r)

r
= Γ0 +O

(
f(y)−2

)
,

where Γ0 is the constant in the shape of (60). Hence

∑
k≤y

∑
r|f(k)

ϕ(r)G(r)2 = y
∞∑
r=1

ϕ(r)G(r)2
%(r)

r
+ c̃f +O

(
y−2d+1

)
= Γ0y + c̃f +O

(
y−2d+1

)
.

We now write
F (t) =

f ′(t)

f(t)
.

Note that F (t) � t−1 and that the antiderivative of F (t) is log f(t). Summation by
parts combined with Lemma 7.2 then yields

Φ′f (y) = Γ0yF (y) + c̃fF (y)− Γ0

∫ y

1

tF ′(t) dt− c̃f
∫ y

1

F ′(t) dt+O
(
y−2d+1

)
= Γ0yF (y)− Γ0

∫ y

1

tF ′(t) dt+ c̃fF (1) +O
(
y−2d+1

)
.

We can now evaluate the integral by integration by parts. Hence∫ y

1

tF ′(t) dt = yF (y)− log f(y) + log f(1)− F (1).

These results combined yield

Φ′f (y) = Γ0 log f(y) + cf +O
(
y−2d+1

)
,
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where
cf = Γ0

(
f ′(1)

f(1)
− log f(1)

)
+ c̃f

f ′(1)

f(1)
.

Hence

Φf (y) = ζ(2)−2
(
Φ′f (y)− Φ′f (y1)

)
= ζ(2)−2Γ0 log (f(y)/f(y1)) +O

(
y−2d+1

)
,

proving Prop. 2.6, and thus completing the final step in the proof of our main result
Thm. 2.1.
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The methods applied in this survey are standard in analytic number theory therefore we
can expect our main result Thm. 2.1 to be generalisable in a number of ways. The most
natural extension would be to k-free numbers. Considering the work of R.C. Vaughan
[Vau05], most of the adjustments would be straightforward. The equivalent of the func-
tion G(n) would only vanish for prime powers pt with t > k though, leading to more
complex expressions for wh(q) than ours in Lemma 4.7, and thus to more cases to be
distinguished between in the product of W (h).

One could also think of applying the methods presented to more general sequences as
Vaughan has done in his papers [Vau98a, Vau98b], following the work of C. Hooley
[Hoo75b]. Indeed, the majority of the techniques relies on the general behaviour of the
asymptotic density g(k, l) rather than on special properties of the squarefree numbers.
Thus our result could be transferred to any sequence whose asymptotic density is positive
and exhibits similar behaviour to g(k, l).

It is also worth thinking of more general functions f . Although we used the fact that f
is a polynomial in a number of places, one may substitute it by a function of more rapid
growth. J. Brüdern and A. Perelli [BP98] have examined functions of the shape

f(k) =
⌊
exp

(
(log k)ϑ

)⌋
,

where the exponent ϑ is a positive number with ϑ < 3
2
. It should be possible to adjust

their methods to our variance in order to obtain an asymptotic formula for this case as
well.

As mentioned in the introduction, the gained error bounds are not the sharpest possible.
Following Vaughan’s more elaborate examinations, the error bound O

(
x3/2+ε

)
may be

replaced by a term of the form O
(
x3/2−δ

)
. However, as our focus was on the main term,

we chose to avoid these technicalities.

Also, we have not paid too much attention on small values for f(y), where better error
bounds than O (x2) can be expected. Again, in the range 0 ≤ f(y)� x2/3+ε no asymp-
totic formula can be obtained, which is why we omitted a further discussion. For similar
reasons, we did not include the case f(y) > x.

A different approach would be to take a step away from variances, and instead examine
an analogue to the Bombieri–Vinogradov theorem. H. Mikawa and T.P. Peneva
[MP05] found an upper bound for primes in spaced moduli, and combining their work
with the methods presented here it should be possible to find a similar estimate for∑

k≤y

f ′(k) max
1≤l≤f(k)

|E(x; f(k), l)|,

where f(y) ≤ xϑ, and ϑ is an exponent to be chosen as large as possible. Note that
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R.C. Orr [Orr71] proved in the non-restricted case that∑
k≤y

max
1≤l≤k

|E(x; k, l)| � x(log x)−A,

where y ≤ x2/3(log x)−A−1, and A > 0 is arbitrary. The exponent ϑ can therefore not
expected to be extended beyond 2

3
.

However, even with these generalisations in mind, the required methods would still
include the Hardy–Littlewood circle method and the analysis of Dirichlet series. Com-
bining these classic techniques with new ideas, analytic number theory remains an active
and vivid field of research.
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Notations

Notations

Throughout the paper, constants c1, c2, . . . , are assumed to be positive. The symbol
ε denotes a (sufficiently small) positive number, not necessarily with the same value in
every occurrence. Implied constants may depend on f and ε, but not on x or y.

a | b the integer a is a divisor of the integer b

pt ‖ b the prime power pt divides the integer b, but pt+1 does not

bαc largest integer not exceeding α

(a, b) greatest common divisor of the integers a and b∫
(ϑ)

short for limT→∞
∫ ϑ+iT
ϑ−iT

�,� the expression g(x)� f(x) is short for g(x) = O(f(x)), and f(x)� g(x) means
g(x)� f(x)

||α|| distance to the closest integer

C the complex numbers

Cf constant of the main term depending on f , an expression is given in (61)

cq(n) Ramanujan’s sum

d degree of the polynomial f

∆(α; q, a) difference between U(α) and U∗(α; q, a), defined in (33)

D(s) Dirichlet series associated to W (h), defined in (19)

E1(s), E2(s), E3(s) analytic functions yielding functional equations for D(s)

e(α) modified exponential function e(α) := exp(2πiα)

E(x; k, l) the error term Q(x; k, l)− g(k, l)x, defined in (3)

f a fixed, integer-valued polynomial of degree d

γ Euler–Mascheroni constant γ = 0.5772156649 . . .

Γ0,Γ
′
0,Γ−3/2 constants that appear in the residues of IH(s)

g(k, l) the asymptotic density of the squarefree numbers, defined in (2)

G(n) multiplicative function defined in (15)

IH(s) integrand containing D(s) tailored at Perron’s formula, defined in (55)
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Notations

=(s) imaginary part of the complex number s

J(α) sum over e(nα), defined in (30)

M0(x, y) reduction of SMR
(x, y), defined in (36)

MR the major arcs depending on the parameter R

mR the minor arcs depending on the parameter R

µ(n) the Möbius function, its square is the indicator function of the squarefree numbers

N the positive integers

ν(q) multiplicative function closely related to G(q), defined in (31)

O(f(x)) a (positive) function g(x) is O(f(x)) if |f(x)| is asymptotically dominant, i. e.,
if g(x) ≤ C|f(x)| for some constant C > 0

o(f(x)) a (positive) function g(x) is o(f(x)) if |f(x)| grows faster than g(x), i. e., if
lim g(x)/|f(x)| = 0

p a prime number

P0, P1, P2 factors in the Euler product of W (h) depending on p

ϕ(n) Euler’s totient function

Φf (y) sum containing g(k, l), defined in (14)

Φ′f (y) completed version of Φf (y), defined in (63)

Q the rational numbers

Q(x; k, l) the number of squarefree integers congruent to l modulo k not exceeding x,
defined in (1)

R parameter of the Farey dissection, here R = 1
2
x1/2

R the real numbers

<(s) real part of the complex number s

%(m) multiplicative function, number of solutions of the congruence f(a) ≡ 0 (m) with
0 ≤ a < m

S0(x, y) sum containing the main contribution in Vf (x, y), defined in (13)

σ0(n) the divisor function
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SMR
(x, y) the restriction of S0(x, y) to the major arcs, defined in (29)

Tf (α) sum over e(αhf(k)), defined in (25)

T ′f,q(α) modified version of Tf (α) where the outer summation variable is divisible by q,
defined in (49)

T ′′f,q(α) modified version of Tf (α) where the outer summation variable is not divisible
by q, defined in (50)

Θf (H) sum accessible by the Dirichlet series D(s), defined in (18)

U(α) sum over µ(n)2e(αn), defined in (26)

U∗(α; q, a) simplified version of U(α), defined in (32)

V ′f (x, y) truncated version of Vf (x, y)

Vf (x, y) the square mean of the error term over the residue classes, defined in (12)

W (h) series combining G(q) and wh(q), defined in (17)

wh(q) multiplicative function of q, defined in (16)

x a (sufficiently large) fixed real number

y a (sufficiently large) fixed real number such that f(y) ≤ x

y1 unique y > 0 such that f(y) = x1/4

y(h) defined by means of the equation f(y(h)) = min{f(y), x/h}

Z the integers

ζ(s) Riemann’s ζ-function
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