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1. Number Fields

1.1. Ring of Integers

Definition (i) A number field K is a field extension of finite degree over Q. Its 07.10.

degree [K : Q] is its dimension as a Q-vector space.

(ii) An algebraic number α ist an algebraic integer if it is a root of a monic polynomial
with integer coefficients. (Equivalently, if the monic minimal polynomial for α
over Q has Z-coefficients).

(iii) Let K be a number field. Its ring of integers OK consists of the elements of K
that are algebraic integers.

Proposition 1 (i) OK is a (Noetherian) ring.

(ii) rankZOK = [K : Q], i. e. OK ∼= Z[K:Q] as an abelian group.

(iii) For every α ∈ K some integer multiple nα lies in OK.

Example Let d ∈ Z \ {0, 1} be squarefree and ζn a primitive nth root of unity.

K = Q, OK = Z

K = Q
(√

d
)
, OK =

{
Z
[√
d
]
, for d ≡ 2, 3 mod 4;

Z
[

1+
√
d

2

]
, for d ≡ 1 mod 4.

K = Q(ζn), OK = Z[ζn]

Proposition 2 (i) OK is the maximal subring of K which is finitely generated as
an abelian group.

(ii) OK is integrally closed in K, i. e. if f ∈ OK [X] is monic and f(α) = 0 with
α ∈ K, then α ∈ OK.

Example In Z, however you factorise integers, you always end up with the same
factorisation into irreducible bits, at least up to order and signs:

24 = 8 · 3 = 2 · 4 · 3 = 2 · 2 · 2 · 3,
24 = 6 · 4 = (−2) · (−3) · 4 = (−2) · (−3) · 2 · 2.

The ambiguity in signs comes from the units not equal to 1 in Z. The unique factori-
sation in this form fails in general number fields, e. g. Q

(√
−5
)
, OK = Z

[√
−5
]
:

6 = 2 · 3 = (1 +
√
−5) · (1−

√
−5),



2 Chapter 1. Number Fields

and 2, 3, 1 +
√
−5, and 1 −

√
−5 cannot be factorised into non-units. Thus Z

[√
−5
]

is not a UFD. Instead one works with ideals.

1.2. Units

Definition A unit in a number field K is an element α ∈ OK with α−1 ∈ OK . The
group of units is denoted by O×K .

Example (i) The units in Q are Z× = {±1}.
(ii) The units in Q(i) are Z[i]× = {±1,±i}.

(iii) The units in Q
(√

2
)
are Z

[√
2
]×

=
〈
−1, 1 +

√
2
〉

= {±(1 +
√

2)n : n ∈ Z}.

Theorem 3 (Dirichlet’s Unit Theorem) Let K be a number field. Then O×K is finitely09.10.

generated. More precisely:
O×K ∼= ∆× Zr1+r2−1,

where ∆ is the (finite) group of roots of unity in K, r1 is the number of distinct
real embeddings K ↪→ R and r2 is the number of distinct pairs of complex conjugated
embeddings K ↪→ C with image not contained in R.

Corollary 4 The only number fields with finitely many units are Q and imaginary
quadratic fields, i. e. Q

(√
−D

)
for an integer D > 0.

1.3. Ideals

Definition Let R be an integral domain. An ideal I ⊆ R is a subgroup of (R,+),
such that for all a ∈ I and r ∈ R holds: ar ∈ I. Notation: I CR.

Example (i) Let K = Q, OK = Z and a = (17) the multiples of 17. Then α ∈ a,
iff α is a multiple of 17. Multiplication of ideals is just the multiplication of its
generators: (3) · (17) = (51).

(ii) Let K = Q
(√
−5
)
and OK = Z

[√
−5
]
which is no PID.

6
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√
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An ideal is, in particular, a sublattice of OK . We will see that it always has finite index
in OK (so I ∼= Z[K:Q]).

Algebraic Number Theory



1.3. Ideals 3

Theorem 5 (Unique factorisation of ideals) Let K be a number field. Every non-zero
ideal of OK admits a factorisation into prime ideals. This factorisation is unique up
to order.

Definition Let a, b C OK be two ideals. Then a divides b (written a | b) if a · c = b
for some ideal cCOK . (Equivalently, if in the prime factorisations a = pn1 · · · pnk and
b = pm1 · · · pmk we have ni ≤ mi for all i.)

Remark (i) For α, β ∈ OK we have (α) = (β) iff α = uβ for some u ∈ O×K .
(ii) For ideals a, bCOK we have a | b iff a ⊇ b (non-trivial).

(iii) To multiply ideals, just multiply their generators:

(2)(3) = (6),

(2, 1 +
√
−5)(2, 1−

√
−5) = (4, 2− 2

√
−5, 2 + 2

√
−5, 6) = (2).

(iv) To add ideals, combine their generators, e. g.

(2) + (3) = (2, 3) = (1) = OK .

Lemma 6 Let a, b C OK be two ideals with prime factorisation a =
∏

pnii and b =∏
pmii . Then:

(i) a ∩ b =
∏

p
max{ni,mi}
i (least common multiple).

(ii) a + b =
∏

p
min{ni,mi}
i (greatest common divisor).

Proof. We will prove this by using part (ii) of the remark.

(i) This is the largest ideal contained in both a and b.

(ii) This is the smallest ideal contained in both a and b.

Lemma 7 Let α ∈ OK \ {0}. Then there is β ∈ OK, such that αβ ∈ Z \ {0}.

Proof. Let Xn + an−1X
n−1 + . . . + a1X + a0 ∈ Z[X] be the minimal polynomial of

α. Then αn + an−1α
n−1 + . . . + a1α = −a0 ∈ Z \ {0}. So we can take β := αn−1 +

an−1α
n−2 + . . .+ a1 ∈ OK .

Corollary 8 If aCOK is a non-zero ideal, then [OK : a] is finite.

Proof. Pick α ∈ a \ {0} and β with N = αβ ∈ Z \ {0}. Then

[OK : a] ≤ [OK : (α)] ≤ [OK : (N)] = [OK : NOK ] = |N |[K:Q] <∞.

Definition The norm of a non-zero ideal aCOK is

N(a) := [OK : a].

Markus Schepke



4 Chapter 1. Number Fields

Lemma 9 Let α ∈ OK \ {0}. Then:

|NK/Q(α)| = N((α)).

Proof. Let v1, . . . , vn be a Z-basis for OK and write Tα : K → K for the Q-linear map
Tα(v) = αv. Then

|NK/Q(α)| = | detTα| = [〈v1, . . . , vn〉 : 〈αv1, . . . , αvn〉]
= [OK : αOK ] = [OK : (α)] = N((α)).

1.4. Ideal Class Group

Definition Let K be a number field. Define an equivalence relation on non-zero ideals
of OK by

a ∼ b :⇐⇒ ∃ λ ∈ K× : a = λb.

The ideal class group C`K of K is the set of classes {aCOK : a 6= 0}/ ∼.

Remark (i) The ideal class group C`K is a group, the group structure coming from
multiplication of ideals.

(ii) The identity is the class of principal ideals.

(iii) OK is a UFD, iff C`K is trivial.

Theorem 10 The ideal class group C`K is finite.

Exercise Let K = Q
(√
−D

)
with an integer D > 0. Show that two ideals have the

same class, iff they are homethetic as lattices in C ∼= R2, i. e. the ideal class shows the
shape of the lattice.

1.5. Primes and Modular Arithmetic

Definition A prime p of a number field K is a non-zero prime ideal of OK . Its residue12.10.

field is OK/p (“Fp”), its residue characteristic is p = charOK/p. Its (absolute) residue
degree is fp = [OK/p : Fp].

Lemma 11 The residue field of a prime is a finite field.

Proof. Let p be a prime. Then OK/p is an integral domain. Corollary 8 implies that
|OK/p| = [OK : p] = N(p) is finite. Thus OK/p is a field.

Remark The size of the residue field at p is |OK/p| = N(p).

Example (i) Let K = Q, OK = Z, and p = (17). Then OK/p = Z/(17) = F17.

Algebraic Number Theory



1.5. Primes and Modular Arithmetic 5

(ii) Let K = Q(i), OK = Z[i], and p = (2+ i). Then OK/p ∼= F5 with representatives
0, i, i+ 1, 2i, 2i+ 1.

(iii) Let K = Q(i), OK = Z[i], and p = (3). Then OK/p ∼= F9 (“= F3[i]”).

(iv) Let K = Q
(√

d
)
with d ≡ 2, 3 mod 4 and OK = Z

[√
d
]
. Let p be a prime of K

with residue characteristic p. Then OK/p is generated by Fp and the image of√
d. The latter is a root of X2− d over Fp, so OK/p = Fp, if d is a square mod p,

and Fp2 otherwise.

Definition If aCOK is a non-zero ideal, we say x ≡ y mod a, if x− y ∈ a. E. g.

2 ≡ 9 mod (7),

3 ≡ i mod (2 + i).

Theorem 12 (Chinese Remainder Theorem) Let K be a number field and p1, . . . , pk
distinct primes. Then:

OK/(pn1
1 · · · pnkk )

∼−→ OK/pn1
1 × . . .×OK/pnkk via

xmod pn1
1 · · · pnkk 7−→ (xmod pn1

1 , . . . , xmod pnkk ).

Proof. Define

ψ : OK −→ OK/pn1
1 × . . .×OK/pnkk by

x 7−→ (xmod pn1
1 , . . . , xmod pnkk ).

Then
kerψ = {x : x ≡ 0 mod pnii ∀ i} =

⋂

i

pnii
L6
=
∏

i

pnii .

It remains to prove that ψ is surjective. Lemma 6 implies

p
nj
j +

∏

i 6=j

pnii = OK ,

so there is an α ∈ p
nj
j and β ∈ ∏i 6=j p

ni
i with α + β = 1. Now β ≡ 0 mod pnii for all

i 6= j and β ≡ 1 mod p
nj
j . Thus imψ contains ψ(β) = (0, . . . , 0, 1, 0, . . . , 0). This is

true for all j, hence ψ is surjective.

Remark The Chinese Remainder Theorem implies that we can solve any system of
congruences

x ≡ a1 mod pn1
1 ,

...
x ≡ ak mod pnkk .

This is called the Weak Approximation Theorem.

Lemma 13 Let pCO be a prime ideal.

Markus Schepke



6 Chapter 1. Number Fields

(i) |OK/pn| = N(p)n.

(ii) pn/pn+1 ∼= OK/p as an OK-module (or abelian group).

Proof. The second statement implies the first one:

|OK/pn| = |OK/p| · |p/p2| · · · |pn−1/pn| = N(p)n.

By unique factorisation we have pn 6= pn+1, so pick π ∈ pn \ pn+1. Thus pn | (π),
pn+1 - (π) and (π) + pn+1 = pn by Lemma 6. Define ϕ : OK → OK/pn+1 by ϕ(x) =
πxmod pn+1. Then:

imϕ = ((π) + pn+1)/pn+1 = pn/pn+1,

kerϕ = {x : πx ∈ pn+1} = {x : pn+1 | (x)(π)} = {x : p | (x)} = p.

Corollary 14 The norm is multiplicative:

N(a · b) = N(a) ·N(b).

Proof. Use Theorem 12 and Lemma 13.

Corollary 15 For all ideals aCOK we have N(a) ∈ a.

Proof. True for prime ideals as charOK/p ≡ 0 mod p and hence lies in p. So true for
all ideals by Cor. 14. Actually, it is obvious anyway: N(a) must be zero in any abelian
group of order N(a). In particular N(a) ≡ 0 in OK/a.

1.6. Enlarging the Field

Example Let Q(i)/Q. Take primes in Q and factorise them in Q(i):14.10.

2Z[i] = (2) = (i+ 1)2 “2 is ramified”,
3Z[i] = (3) remains prime “3 is inert”,
5Z[i] = (5) = (2 + i)(2− i) “5 splits”.

Definition Let L/K be an extension of number fields and a C OK an ideal. The
conorm of a is the ideal aOL of OL. Equivalently, if a = (α1, . . . , αn) as an OK-module
then aOL = (α1, . . . , αn) as an OL-module.

Remark (i) (aOL)(bOL) = (ab)OL.
(ii) aOM = (aOL)OM when K ⊆ L ⊆M .

Warning : Sometimes, we write a for aOL as well.

Proposition 16 Let L/K be an extension of number fields and a C OK a non-zero
ideal. Then:

N(aOL) = N(a)[L:K].

Algebraic Number Theory



1.6. Enlarging the Field 7

Proof. If a = (α) is principal, then by Lemma 9:

N(aOL) = |NL/Q(α)| = |NK/Q(α)|[L:K] = N(a)[L:K],

so all is ok. In general, because C`K is finite, ak = (α) for some k ≥ 1. Hence:

N(aOL)k
C14
= N(akOL) = N(ak)[L:K] C14

= N(a)k[L:K],

and so N(aOL) = N(a)[L:K] as well.

Definition A prime q of L lies above a prime p of K if q | pOL. (Equivalently if
q ⊇ p.)

Lemma 17 Let L/K be an extension of number fields. Every prime of L lies above a
unique prime of K: qCOL lies above (q ∩ OK) COK.

Proof. First, q ∩ OK is a prime of OL, and it is non-zero since it contains e. g. N(q)
(Cor. 15). So q lies above p = q ∩ OK . If q also lies above p′ 6= p, then

q ⊇ p + p′ = OK 3 1,

which is a contradiction.

Lemma 18 Suppose q C OL lies above p C OK. Then OL/q is a field extension of
OK/p.

Proof. Define

ϕ : OK/p −→ OL/q by xmod p 7−→ xmod q.

This is well defined as q contains p. Moreover, ϕ is a ring homomorphism (with 1→ 1),
so has no kernel as OK/p is a field, i. e. it is an embedding OK/p ↪→ OL/q.

Remark (to the proof) The “reduction mod q” map on OL extends the “reduction
mod p” map on OK .

Example Let Q(i)/Q. Take p = (3) COK and q = (3) COL:

6

-q q q q q q q
q q q q q q q
q q q q q q q
q q q q q q q

t t t

t t t

F3

F9

Then Z/(3) ≡ F3 sits inside Z[i]/(3) ≡ F9 in the natural way. Note also that (n) = nZ[i]
clearly has norm n2 = n[Q(i):Q] (cf. Prop. 16).

Definition If q lies above p, then its residue degree is fq/p = [OL/q : OK/p]. The
ramification degree is the exponent eq/p in the prime factorisation pOL =

∏
q
eqi/p
i .

Markus Schepke



8 Chapter 1. Number Fields

Theorem 19 Let L/K be an extension of number fields and p a prime of K.

(i) If pOL decomposes as pOL =
∏m

i=1 q
ei
i , with qi distinct and ei = eqi/p, then:

m∑

i=1

eqi/p · fqi/p = [L : K].

(ii) If M/L is a further extension, rCOM lies above qCOL and q lies above pCOK,
then:

er/p = er/q · eq/p and fr/p = fr/q · fq/p.

Proof. (i) Using Cor. 14 and Prop. 16:

N(p)[L:K] = N(pOL) = N
(∏

qeii

)
=
∏

N(qi)
ei

=
∏

N(p)fqi/p·eqi/p = N(p)
∑
fqi/p·eqi/p .

(ii) Multiplicativity of e follows by writing out the prime decomposition of pOM .
That of f is the tower law:

[OM/r : OL/q] · [OL/q : OK/p] = [OM/r : OK/p].

Definition Let L/K be an extension of number fields and p a prime of K with pOL =∏m
i=1 q

ei
i . Then p splits completely if m = [L : K], i. e. ei = fi = 1 for all i; p splits

if m > 1; and p is totally ramified in L if m = fi = 1 and ei = [L : K]. We will see
that where L/K is Galois, then ei = ej and fi = fj for all i, j. Then we say that p is
ramified if e1 > 1, and unramified if e1 = 1.

Example (i) 5 splits (completely) in Q(i)/Q.

(ii) 2 is (totally) ramified in Q(i)/Q.

(iii) p is totally ramified in Q(ζpn)/Q.

Theorem 20 (Kummer-Dedekind) Let L/K be an extension of number fields. Suppose16.10.

OK [α] ⊆ OL has finite index N for some α ∈ OL with minimal polynomial f(x) ∈
OK [x]. Let pCOK be a prime ideal not dividing N (so charOK/p - N). If

f(x) ≡
m∏

i=1

ḡi(x)ei mod p

for distinct and irreducible gi, then

pOL =
m∏

i=1

qeii with qi = pOL + gi(α)OL = (p, gi(α)),

where gi(x) ∈ OK [x] is such that ḡi(x) ≡ gi(x) mod p. The qi are distinct primes of
L, with eqi/p = ei and fqi/p = deg ḡi(x).

Algebraic Number Theory



1.6. Enlarging the Field 9

Example Let K = Q, L = Q(ζ5) and OL = Z[ζ5]. Take α = ζ5, so N = 1 and
f(X) = X4 +X3 +X2 +X + 1. Then:

• f(X) mod 2 is irreducible, hence (2) is prime in OL.
• f(X) mod 3 is irreducible, hence (3) is prime in OL.
• f(X) mod 5 = (X − 1)4, hence (5) = (5, ζ5 − 1)4.

• f(X) mod 11 = (X − 4)(X − 9)(X − 5)(X − 3), hence (11) = (11, ζ − 4)(11, ζ −
9)(11, ζ − 5)(11, ζ − 3).

• f(X) mod 19 = (X2+5X+1)(X2−4X+1), hence (19) = (19, ζ2+5ζ+1)(19, ζ2−
4ζ + 1).

Example Let K = Q, L = Q(ζpm) with p prime and OL = Z[ζpm ]. Then take α = ζpm ,
so N = 1,

f(X) =
Xpm − 1

Xpm−1 − 1
, f(X) ≡ (X − 1)p

m−pm−1

mod p.

Thus p totally ramified in Q(ζpm). If p 6= q is also prime, then working mod q:

gcd

(
Xpm − 1,

d

dX
(Xpm − 1)

)
= 1,

so Xpm−1 has no repeated roots in Fq, hence f(X) mod q has no repeated roots, hence
all ei are 1, i. e. q is unramified in Q(ζpm).

Remark We can’t always find α, such that OL = OK [α]. However, by the Primitive
Element Theorem, we can find α such that L = K(α). Scaling α if necessary gives
α ∈ OL such that L = K(α); hence OK has finite index in OL. So the theorem allows
us to decompose all except possibly a finite number of primes.

Proof of Thm. 20. Write A = OK [α], F = OK/p and p = charF. Then we define

OK [X]/(f(X), p, gi(X))
∼−→ A/(pA+ gi(α)A) via x 7−→ α, with

OK [X]/(f(X), p, gi(X)) ∼= F[X]/(f̄(X), ḡi(X)) ∼= F[X]/(ḡi(X)).

So this is a field of degree fi = deg ḡi over F, as ḡi is irreducible.

Now pick M ∈ Z such that NM ≡ 1 mod p and consider

ϕ : A/(pA+ gi(α)A) −→ OL/qi, ϕ(xmod pA+ gi(α)A) = xmod qi.

This is well defined as qi ⊇ pA + gi(α)A. Moreover, ϕ is surjective: If x ∈ OL then
Nx ∈ A, and

ϕ(MNx) ≡MNx ≡ x mod qi

as MN ≡ 1 mod qi. We know that OL/qi is non-zero since otherwise l ∈ pOL +
gi(X)OL. So both p and NM are in pA + gi(α)A, hence 1 ∈ pA + gi(α)A, which is a
contradiction. Therefore OL/qi is a field extension of F of degree fi = deg ḡi and qi is
prime.

Markus Schepke



10 Chapter 1. Number Fields

Now for i 6= j, as gcd(ḡi(x), ḡj(x)) = 1, we can find λ(X), µ(X) ∈ OK [X] such that

λ(X)gi(X) + µ(X)gj(X) ≡ 1 mod p.

Then qi + qj contains both p and

λ(α)gi(α) + µ(α)gj(α) ≡ 1 mod p,

so qi + qj = OL and hence qi 6= qj for i 6= j.

∏

i

qeii =
∏

i

(pOL + gi(α)OL)ei ⊆ pOL +

(∏

i

gi(α)ei

)
OL = pOL,

as
∏
gi(α)ei ≡ f(α) ≡ 0 mod p. But

N
(∏

qeii

)
=
∏(
|F|fi

)ei
= |F|deg f = |F|[L:K] P16

= N(pOL),

so
∏

qeii = pOL.

Proposition 21 Let L/Q be a finite extension, α ∈ OL with L = Q(α) and minimal
polynomial f(X) ∈ Z[X]. If f(X) mod p has distinct roots in Fp, then

[
OL : Z[α]

]
is

coprime to p. Hence, the Kummer-Dedekind Theorem applies.

Proof. Let F be the splitting field of f with f(X) =
∏

(X − αi), αi ∈ F and p is a
prime of F above p. As f(X) has no repeated roots in Fp and f̄(X) =

∏
(X − ᾱi)

(with ᾱi denoting the reduction mod p), the ᾱi are distinct in OF/p. Hence:
∏

i<j

(αi − αj) 6≡ 0 mod p.

Let β1, . . . , βn be a Z-basis for OL, so (1 α . . . αn−1)> = M(β1 β2 . . . βn)> for some
M ∈ Zn×n with detM =

[
OL : Z[α]

]
. Writing id = σ1, . . . , σn for the embeddings

L ↪→ F , we have

∏

i<j

(αi − αj) =

∣∣∣∣∣∣∣∣∣

1 1 · · · 1
α1 α2 · · · αn
...

... . . . ...
αn−1

1 αn−1
2 · · · αn−1

n

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣

1 1 · · · 1
α1 σ2(α1) · · · σn(α1)
...

... . . . ...
αn−1

1 σ2(α1)n−1 · · · σn(α1)n−1

∣∣∣∣∣∣∣∣∣

= detM ·

∣∣∣∣∣∣∣∣∣

β1 σ2(β1) · · · σn(β1)
β2 σ2(β2) · · · σn(β2)
...

... . . . ...
βn σ2(βn) · · · σn(βn)

∣∣∣∣∣∣∣∣∣
=
[
OL : Z[α]

]
·B

for some B ∈ OF . Hence p -
[
OL : Z[α]

]
.

Proposition 22 Let K be a number field and p a prime of K. Suppose f(X) =
Xn + an−1X

n−1 + . . .+ a1X + a0 ∈ OK [X] is Eisenstein with respect to p, i. e. p | (ai)
for all i and p2 - (a0). Then, writing α for a root of f , K(α)/K has degree n = deg f
and p is totally ramified in K(α).

Proof. See Local Fields (p. 48).

Algebraic Number Theory



2. Decomposition of Primes

2.1. Action of the Galois Group

Definition Let F/K be a finite Galois extension of number fields. By Gal(F/K) = 19.10.

AutK(F ) we denote the Galois group of F over K. Then:

(i) F/K is normal, i. e. if f ∈ K[x] is irreducible with a root in F then f has all its
roots in F .

(ii) |Gal(F/K)| = [F : K].

(iii) We have a 1–1 correspondence between subgroups and intermediate fields:

H ≤ Gal(F/K) −→ FH ,

Gal(F/L) ←− K ⊆ L ⊆ F,

where FH = {x ∈ F : σ(x) = x ∀ σ ∈ H} denotes the fixed field of F under H.
E. g.:

Q(ζ3,
3
√

2)

Q( 3
√

2)

C2
rrrrrrrrrr

Q(ζ3)

C3

KKKKKKKKKK

Q
not Galois

LLLLLLLLLLLL

S3

S3/C3
∼=C2

ssssssssssss

Lemma 23 Let g ∈ Gal(F/K).

(i) If α ∈ OF , then g(α) ∈ OF , i. e. Gal(F/K) acts on OF .
(ii) If aCOF is an ideal, then so is g(a) COF .
(iii) If a and b are ideals, then: g(ab) = g(a)g(b) and g(a + b) = g(a) + g(b).

If q is a prime of F above p, a prime of K, then:

(iv) g(q) is a prime of F above p, i. e. Gal(F/K) permutes the primes above F over
p.

(v) eq/p = eg(q)/p and fq/p = fg(q)/p.

Proof. Clear.
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Example LetK = Q, F = Q(i), OF = Z[i] and Gal(F/K) = {id, σ}, where σ denotes
the complex conjugation. Then:

-

6

r r r r rr r r r rr r r r rr r r r rr r r r r
��

@@

@@

��u uu u uu uu u uu u
(i+ 1)

-
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r r r r rr r r r rr r r r rr r r r rr r r r rr r r r rr r r r r

u
u
u

u
u
u

(2)

-

6
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r
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rr
rr
r
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rr
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rr
r

rr
rr
rr
rr
r

rr
rr
rr
rr
r

rr
rr
rr
rr
r

��
�A
A
A

���
A
A
A

u

u
u

u
u

u

u
u

u

u

uHHH
�
�
�HH

H
�
�
�

u

u

u

u
e

u

u

u

u
u

u

(2 + i)

(2− i)

• (i+ 1) is fixed by Gal(F/K),

• (2) is fixed by Gal(F/K),

• (2 + i) and (2− i) are swapped by Gal(F/K).

Theorem 24 Let F/K be a Galois extension of number fields, p a prime of K. Then
Gal(F/K) acts transitively on the primes above p.

Proof. Let q1, . . . , qn be the primes above p. Required to prove: There is a g ∈
Gal(F/K) such that g(q1) = q2. Then

∏

h∈Gal(F/K)

h(x) ∈ q1 ∩ OK = p ⊆ q2.

So for some g ∈ Gal(F/K) we have g(x) ≡ 0 mod q2. Thus x ≡ 0 mod g−1(q2),
which implies g−1(q2) = q1 and g(q1) = q2, respectively.

Corollary 25 Let F/K be a Galois extension of number fields. If q1 and q2 lie above
p then

eq1/p = eq2/p and fq1/p = fq2/p.

So we can write ep and fp.

Example Let F/K be a Galois extension of number fields and {q1, . . . , qn} the set
of primes above p. Knowing the action of Galois on {q1, . . . , qn} allows us to easily
find the number of primes above p in any intermediate field L – it is the number of
Gal(F/L)-orbits on {q1, . . . , qn}. E. g. say Gal(F/K) ∼= S4, and there are four primes
q1, . . . , q4 in F above p, with S4 acting in the usual way on the four points. Consider
H = {id, (1 2)(3 4)} ≤ S4 and L = FH . Then Gal(F/L) = H acts transitively on the
primes above every prime of L, so the number of primes above p in L is equal to the
number of H-orbits on {q1, . . . , q4}, which is 2.

2.2. The Decomposition Group

Definition Let F/K be a Galois extension of number fields, q a prime of F above p,21.10.

Algebraic Number Theory



2.2. The Decomposition Group 13

a prime of K. The decomposition group Dq (= Dq/p) of q (over p) is the subgroup of
Gal(F/K) fixing q, i. e.

Dq/p = StabGal(F/K)(q) = {g ∈ Gal(F/K) : g(q) = q}.

Remark Every g ∈ Dq fixes q, so it acts on OF/q by xmod q 7→ g(x) mod q. This
gives a natural map Dq → Gal((OF/q)/(OK/p)).

Example Let K = Q, F = Q(i) and p = 3. The complex conjugation acts as

a+ bimod 3 7−→ a− bimod 3 = (a+ bi)3 mod 3,

i. e. exactly as the Frobenius automorphismus x 7→ x3 on F9.

Theorem 26 Let F/K be a Galois extension of number fields, q a prime of F above
p, a prime of K. Then the natural map Dq → Gal((OF/q)/(OK/p)) is surjective.

Proof. Take β ∈ OF/q with OF/q = OK/p(β) (e. g. a generator for (OK/q)×).
Let f(X) ∈ OK/p[X] be its minimal polynomial and β = β1, . . . , βn ∈ OF/q its
roots. (Note: As F/K is a Galois extension, all roots lie in OF/q.) Because
Gal((OF/q)/(OK/p)) is cyclic, g(β) determines g ∈ Gal((OF/q)/(OK/p)). So it suf-
fices to prove that there is a g ∈ Gal(F/K) with g(q) = q (i. e. g ∈ Dq/p) and g(β) = β2.
Pick α ∈ OF with α ≡ β mod q and α ≡ 0 mod q′ for all other q′ above p. This is
possible by the Chinese Remainder Theorem (Thm. 12). Let F (X) ∈ OK [X] be its
minimal polynomial over K and α = α1, . . . , αr ∈ OF its roots (again, all roots are
in F since F/K is Galois). Then F (X) mod q has β as a root, hence F (X) mod q is
divisible by f(X), so F (X) mod q has β2 as a root. W. l. o. g. assume α2 ≡ β2 mod q.
Now take Gal(F/K) with g(α) = α2. Then g(α) 6≡ 0 mod q, so g(q) = q by choice of
α, thus g ∈ Dq and g(β) = β2.

Corollary 27 Let K be a number field and F/K the splitting field of a monic irreducible
polynomial f(X) ∈ OK [X] of degree n. Let p be a prime of K and

f(X) ≡ g1(X)g2(X) · · · gk(X) mod p

with gi(X) ∈ OK/p[X] distinct irreducible polynomials of degree deg gi = di. Then
Gal(F/K) ⊆ Sn has an element of cycle type (d1, . . . , dk).

Proof. Let q be a prime above p. Let α1, . . . , αn ∈ F be the roots of f . Note that
αi mod q is a root of f mod p and that these are distinct (as the gi are distinct). Thus
the action of g ∈ Dq on α1, . . . , αn is exactly the same as on α1 mod q, . . . αn mod q. So
take g which maps to the generator of Gal((OF/q)/(OK/p)) – it has the correct cycle
type on the αi mod q.

Definition Let F/K be a Galois extension of number fields and q a prime above p.
The inertia subgroup Iq = Iq/p is the (normal) subgroup of Dq/p that acts trivially on
OF/q, i. e.:

Iq = ker(Dq −→ Gal((OF/q)/(OK/p))).

Markus Schepke



14 Chapter 2. Decomposition of Primes

Since Dq → Gal((OF/q)/(OK/p)) is surjective, we have

Dq/Iq ∼= Gal((OF/q)/(OK/p)).

The latter is cyclic and generated by the Frobenius map ϕ(x) = x|OK/p|. The (arith-
metic) Frobenius element Frobq/p is the element of Dq/Iq that maps to ϕ.

Remark In Cor. 27, Iq/p is trivial and Frobq/p acts as the element of Sn of cyclic type
(d1, . . . , dk).

Theorem 28 Let F/K be a Galois extension of number fields and q a prime of F
above p, a prime of K. Then:

(i) |Dq/p| = eq/p · fq/p.
(ii) The order of Frobq/p is fq/p.

(iii) |Iq/p| = eq/p.

If K ⊆ L ⊆ F is an intermediate field and s is a prime of L below q, then:

(iv) Dq/s = Dq/p ∩Gal(F/L).

(v) Iq/s = Iq/p ∩Gal(F/L).

Proof. (i) If n denotes the number of primes above p, then

n|Dq/p| = |Gal(F/K)| = [F : K] = n · eq/p · fq/p.

(ii) We have
fq/p = [OF/q : OK/p] = |Gal((OF/q)/(OK/p))|,

which is the order of Frobq/p.

(iii) The order of the decomposition group |Dq/p| is the order of the inertia group |Iq/p|
multiplyed by the order of the Frobenius element Frobq/p, hence

|Iq/p| =
eq/p · fq/p
fq/p

= eq/p.

The rest follows straight from the definition.

Example Let K = Q and F = Q(
√

2,
√

3).23.10.

Q(
√

2,
√

3)

Q
(√

2
)

rrrrrrrrrr

Q
(√

3
)

Q
(√

6
)

LLLLLLLLLL

Q

MMMMMMMMMMMM

qqqqqqqqqqqq
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(i) Let p = 2, and q be a prime in F above p. Then (2) = (
√

2)2 ramifies in Q
(√

2
)
.

It also ramifies in Q
(√

3
)
and Q

(√
6
)
since

X2 − 3 ≡ (X + 1)2 mod 2, and X2 − 6 ≡ X2 mod 6.

This is enough to ensure that 2 is totally ramified in F : By the multiplicativity of
e, we have eq ≥ 2, and so |Iq| ≥ 2. Hence Iq contains Gal

(
F/Q

(√
d
))

for one of

d = 2, 3, 6, so the prime above 2 ramifies in F/Q
(√

d
)
. Therefore eq = 2 · 2 = 4,

and Iq = C2 × C2.

(ii) Let p = 3, and q be a prime in F above p. Then (3) = (
√

3)2 = (3,
√

6)2 ramifies
in Q

(√
3
)
and Q

(√
6
)
, but X2 − 2 is irreducible modulo 3, and so (3) is prime

in Q
(√

2
)
. Hence e3 ≥ 2 and f3 ≥ 2, so there is a unique prime above 3 in

F , and e3 = f3 = 2, i. e. (3) ramifies in F/Q
(√

2
)
. By |Dq| = ef , we obtain

Iq = Gal
(
F/Q

(√
2
))
, and Dq = Gal (F/Q).

Example Let K = Q and F = Q(ζn), where ζn is a primitive nth root of unity. Let
p - n be a prime, and q a prime of F above p. We know that p is unramified, so
Iq/p = {id} and Dq/p =

〈
Frobq/p

〉
. The Frobenius element Frobq/p acts as x 7→ xp on

OF/q, so Frobq/p(ζn) ≡ ζpn mod q. Since ζ in are distinct in OF/q as Xn − 1 mod p has
distinct roots, this implies Frobq/p(ζn) = ζpn. In particular, fq/p is the order of Frobq/p,
and hence the order of p in (Z/nZ)×.

2.3. Counting Primes

Lemma 29 Let F/K be a Galois extension of number fields. Then:

(i) The primes of K are in bijection with Gal(F/K)-orbits on primes of F via

p ←→ primes of F above p.

(ii) If q is a prime of F above p then gDq 7→ g(q) is a Gal(F/K)-set isomorphism
from Gal(F/K)/Dq to the set of primes above p.

(iii) The Galois group Gal(F/K) acts as conjugation on the decomposition group, the
inertia group and the Frobenius element:

Dg(q) = gDqg
−1, Ig(q) = gIqg

−1, Frobg(q) = g Frobq g
−1.

Proof. Everything follows from transitivity of the action and elementary checks, re-
spectively.

Corollary 30 Let F/K be a Galois extension of number fields and L an intermediate
field. The there is a bijection between the set of primes of L above p, the Gal(F/L)-
orbits on primes of F above p and the double cosets H\G/Dq, where H = Gal(F/L),
G = Gal(F/K) and q is a prime of F above p via the map that sends s to the elements
that send q to some prime above s.

Markus Schepke
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Remark With H\G/D we mean the set {HgD : g ∈ G}, where HgD = {hgd : h ∈
H, d ∈ D}. These partition G but don’t have equal size. The double cosets H\G/D
correspond to the H-orbits on G/D and to the D-orbits on H\G, where D acts by
d(Hg) = Hgd−1. What is the interpretation of D-orbits on H\G? Let H be the
stabiliser of α, where L = K(α), i. e. we want Dq-orbits on the roots of the minimal
polynomials of α; equivalently on the embeddings L ↪→ F .

Proposition 31 Let F/K be a Galois extension of number fields, L = K(α) an in-
termediate field, G = Gal(F/K) and H = Gal(F/L). Let q be a prime of F above
sCOL, and s above p, a prime of K. Consider the G-set (of size [L : K]) X = H\G
corresponding to the embeddings L ↪→ F and the roots of the minimal polynomial of α,
respectively. Then there is a 1–1 correspondence between the primes of L above p and
the Dq-orbits on X, where es/pfs/p is the size of the Dq-orbit, es/p is the size of any
Iq-suborbit, and fs/p is the number of Iq-suborbits. Explicitly: s maps to the orbit of
g−1(α), where g(α) lies above s.

Proof. The 1–1 correspondence is the correspondence constructed in Cor. 30 and the
last remark. Let N denote the size of the Dq-orbit of g−1(α). Then:

N =
|Dq|

| StabDq(g
−1(α))| =

|Dq|
| StabgDqg−1(α)|

=
|Dq|

|gDqg−1 ∩H| =
|Dq|
|Dg(q)/s|

=
eq/pfq/p
eq/sfq/s

.

Similarly, the size of Iq-orbits is es/p. (Note: This is independent of the subscript!)
Moreover, the number of Iq-suborbits is

es/pfs/p
es/p

= fs/p.

Example Let K = Q, F = Q(ζ5,
5
√

2) and p = 73. Fix primes p and q above 73 in26.10.

Q(ζ5) and F , respectively. First notice that 73 is a generator of (Z/5Z)×, so p has
residue degree 4. Moreover, we know that q/p is unramified since otherwise 5 | eq/73,
which cannot happen as there is no ramification in Q( 5

√
2)/Q by the Kummer-Dedekind

Theorem (Thm. 20) because X5 − 2 has distinct roots modulo 73. Hence we have
eq/73 = 1 and fq/73 = 4 or fq/73 = 20, i. e. Iq = {id} and Dq = C4 or Dq = C20

(generated by Frobq/73). But C20 is not a subgroup of Gal(F/Q) ≤ S5, and so Dq = C4.
Now take L = Q( 5

√
2). Then Gal(F/Q) permutes 5

√
2, ζ5

5
√

2, . . . , ζ4
5

5
√

2. W. l. o. g. we
can assume that Dq fixes 5

√
2, and permutes the others cyclicly, while Iq fixes all five.

Hence there are two primes in L above 73, with residue degrees 1 and 4, and ramification
degrees 1 and 1, respectively.

Example (Euler’s Criterion ++) Recall: a is a square modulo p iff a
p−1
2 ≡ 1 mod p,

for p - n. This follows from the cyclicity of F×p . Similar, for p - 3a:

• X3 − a has three roots modulo p iff a
p−1
3 ≡ 1 mod p.

• X3 − a is irreducible modulo p iff a
p−1
3 is a root of X2 +X + 1 modulo p.

Algebraic Number Theory
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• X3 − a has one root modulo p iff p ≡ 2 mod 3.

For a generic polynomial, we cannot exploit the cyclicity of F×p . Instead: Let f(X) =
X3 + bX + c, with b, c ∈ Z, and F be its splitting field, with roots α, β, and γ. For
g ∈ S3 (permuting α, β, and γ) consider

αg(α) + βg(β) + γg(γ).

It is a root of one of

Γ1 = X − (α2 + β2 + γ2) = X − (α + β + γ)2 + 2(αβ + αγ + βγ) = X + 2b,

Γ2 =
(
X − (αβ + βα + γ2)

) (
X − (αγ + β2 + γα)

) (
X − (α2 + βγ + γβ)

)

= X3 − 3b2X − b3 − 27c2,

Γ3 = (X − (αβ + βγ + γα)) (X − (αγ + βα + γβ)) = (X − b)2.

(Simply oben brackets, and rewrite in terms of the symmetric functions α+β+ γ = 0,
αβ + αγ + βγ = b, and αβγ = −c.) Now take p, and a prime q above p in F . To
determine the factorisation of f(X) modulo p, look at Frobq/p: If f(X) has distinct
roots modulo p (this is equivalent to p - 4b3 + 27c2) then the number of roots modulo p
is equal to the number of fixed points of Frobq/p. (The action of Frobq/p on α, β, and
γ corresponds to the action of ϕ : x 7→ xp on α, β, and γ modulo q.) So compute

αFrobq/p(α) + β Frobq/p(β) + γ Frobq/p(γ) ≡ αp+1 + βp+1 + γp+1 mod q

≡ Tr




0 0 −c
1 0 −b
0 1 0



p+1

mod p

(
= TrFp[X]/(X2+bX+c)(x

p+1)
)
,

where we could have taken any matrix with eigenvalues α, β, and γ. Therefore, if
p - 3b(4b2 + 27c2) (so Γ1, Γ2, and Γ3 have no common roots modulo p) then f(X)
has three roots modulo p. Let T denote the trace of the above matrix, then this is
equivalent to T ≡ −2b mod p. Furthermore, f(X) is irreducible iff T ≡ b mod p, and
f(X) has one root iff T is a root of X3 − 3b2X − 2b3 − 27c3 modulo p.

2.4. Interlude: Induced Representations

Definition Let G be a finite group. If X is a finite G-set (of size n), we associate to it
the n-dimensional representation C[X] which has {ex}x∈X as a basis and with G-action

g
(∑

λxex

)
=
∑

λxeg(x).

The number of G-orbits on X can be recovered as 〈1,C[X]〉. The character of C[X] is
given by

χC[X](g) = #{x ∈ X : g(x) = x}.
Let H be a subgroup of G of index n and let V be an H-representation. The induction
of V to G is

IndGH V := HomC[G],V .

Markus Schepke
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Concretely, if g1, . . . , gn is a set of left coset representatives of H, take IndV to be n
copies of V with G-action determined by

g(0, . . . , 0, v, 0, . . . , 0) = (0, . . . , 0, h(v), 0, . . . , 0),

where the ith entry v gives the jth entry h(v) when ggi = gjh with h ∈ H. Note that
if V = 1 then IndGH V simply gives C[G/H]. The character formula is

χIndV (g) =
1

|H|
∑

x∈G:zgz−1∈H

χV
(
zgz−1

)
.

We have: dim IndGH % = [G : H] · dim %.

Example (Induction vs Restriction) Take G = S4 and H = S3 ≤ G. The character
tables are:

1 (∗∗) (∗ ∗ ∗) (∗∗)(∗∗) (∗ ∗ ∗∗)
1 1 1 1 1 1
s 1 −1 1 1 −1
T 2 0 −1 2 0
V 3 1 0 −1 −1
W 3 −1 0 −1 1

1 (∗∗) (∗ ∗ ∗)
1 1 1 1
ε 1 −1 1
% 2 0 −1

Representations restrict from G to H as follows (trivial computation):

• ResGH 1 = 1,

• ResGH s = ε,

• ResGH T = %,

• ResGH V = 1⊕ %, and
• ResGHW = ε⊕ %.

Induction from H to G works as:

• IndGH 1 = 1⊕ V ,

• IndGH ε = s⊕W , and

• IndGH % = T ⊕ V ⊕W .

Theorem (Frobenius Reciprocity) For V a representation of H andW a representation
of G with H ≤ G we have

〈
V,ResGHW

〉
H

=
〈
IndGH V,W

〉
G
.

Theorem (Mackey’s Formula) Let D,H ≤ G and let % be an H-representation. Fix
X = {x1, . . . , xn} a set of H–D double coset representatives, and for x ∈ X define the
x−1Hx-representation %x by %x(x−1gx) = %(g). Then:

ResGD IndGH %
∼=
⊕

x∈X

IndDx−1Hx∩D Resx
−1Hx
x−1Hx∩D %

x.

Algebraic Number Theory
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2.5. Representations of the Decomposition Group

Fix the following setting: Let F/K be a Galois extension of number fields, p a prime 28.10.

of K, q lies above p, D = Dq/p, I = Iq/p, Frob = Frobq/p, and G = Gal(F/K).

Remark If L is an intermediate field and H = Gal(F/L). Then the number of primes
of L above p is equal to the number of H-orbits on G/D (Cor. 30), which is equal to〈
ResGH IndGD 1D,1H

〉
H

=
〈
1D,ResGD IndGH 1G

〉
D
, which is the number of D-orbits on the

embeddings G ↪→ F as in Prop. 31.

Definition If V is a representation of D, write V I for the subspace of I-invariant
vectors. As I CD, this is a subrepresentation.

Exercise Check this – if v ∈ V I then so is gv, because for h ∈ I, we have h(gv) =
gh′v = gv for some h′ ∈ I.

Lemma 32 If V is an irreducible representation of D, then either V I = 0 or V is
1-dimensional, lifted from D/I = 〈Frob〉, i. e. D → D/I → C×. (These kill I and are
determined by the action of Frob.)

Proof. As V I is a subrepresentation, we have V I = 0 or V I = V . If V I = V , then the
action of D factors through D/I. The latter is abelian, so V is 1-dimensional.

Remark So representations of D look like V = A ⊕ B with AI = 0 and BI = V I ,
which is the direct sum of 1-dimensional representations of D/I. (A representation
with V I = V is called unramified, else ramified.)

Definition For the characteristic polynomial of the Frobenius element on V I we write

Φq/p(V, t) := detV I (t id−Frobq/p).

Lemma 33 Let ψ : D → D/I → C× be a 1-dimensional representation of D with
ψ(Frob) = ζ, a root of unity. Then 〈ψ, V 〉 =

〈
ψ, V I

〉
is equal to the multiplicity of

(t− ζ) in Φq/p(V, t).

Proof. Clear from the previous remark.

Remark Thus Φ simply encodes the multiplicities of the 1-dimensional representation
of D/I in representation of D.

Proposition 34 Let K ⊆ L ⊆ F be an intermediate field and V a representation of
H = Gal(F/L). Then

Φq/p(ResD IndDH V, t) =
∏

s

Φqi/s(ResHDqi/s
V, tfs/p),

where s ranks over the primes of L above p, and q, a prime of F , lies above s.
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20 Chapter 2. Decomposition of Primes

Proof. We will show that the LHS and the RHS have the same roots, with the same
multiplicities. Note that the roots are fq/pth roots of unity. Let ζ be such a root and
take ψ : D → D/I → C× with ψ(Frob) = ζ. Let N denote the multiplicity of t− ζ in
LHS, then:

N
L33
=

〈
ψ,ResD IndGH V

〉
D

Mackey
=

∑

x∈H\G/D

〈
ψ, IndDx−1Hx∩D Resx

−1Hx
x−1Hx∩D V

x
〉
D

L29(i)
=

∑

s

〈
ψx
−1

, Ind
Dqi/p

Dqi/s
ResHDqi/s

V
〉
Dqi/p

Frob.Rec.
=

∑

s

〈
Res

Dqi/p

Dqi/s
ψx
−1

,ResHDqi/s
V
〉
Dqi/p

L33
=

∑

s

mult. of t− ζfs/p in Φqi/s(ResHDqi/s
V, t)

=
∑

s

mult. of t− ζ in Φqi/s(ResHDqi/s
V, tfs/p).

Corollary 35 Take ψn : D → D/I → C× which maps Frob to a primitive nth root of
unity (with n | fq/p). Then the number of primes s of L above p with n | fs/p is equal
to
〈
ψn,ResGD IndGH 1H

〉
D
.

Proof. We have:

〈
ψn,ResGD IndGH 1H

〉
D

L33
= mult. of t− ζn in Φq/p(ResD IndG 1, t)

P34
= mult. of t− ζn in

∏

s

Φqi/p(1, t
fs/p)

= mult. of t− ζn in
∏

s

(tfs/p − 1)

= number of primes s with n | fs/p.

Exercise Deduce Cor. 35 straight from Prop. 31.
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3. L-Series

In this chapter, we want to prove two statements: 30.10.

(i) If (a, n) = 1 then there are infinitely many primes p ≡ a mod n.

(ii) If f(X) ∈ Z[X] monic and f(X) mod p has a root for every prime p, then f is
reducible.

The method will use certain infinite series.

Definition An (ordinary) Dirichlet series is a series

f(s) =
∞∑

n=1

ann
−s, an ∈ C, s ∈ C.

Warning : Traditionally, the complex variable is s = σ + it.

3.1. Convergence Properties

Lemma 36 (Abel’s Lemma) Let an and bn be sequences in C. Then:

M∑

n=N

anbn =
M−1∑

n=N

(
n∑

k=N

ak

)
(bn − bn+1) +

(
M∑

k=N

ak

)
bM .

Proof. Elementary rearrangement. Cf. integration by parts with a↔ dv and b↔ du:
∫
u dv = [uv]−

∫
v du.

Proposition 37 Let f(s) =
∑
ane−λns where λn → ∞ is an increasing sequence of

positive real numbers.

(i) If the partial sums
∑M

n=N an are bounded, then the series converges locally uni-
formly on <(s) > 0 to an analytic function.

(ii) If the series f(s) converges for s = s0, then it converges locally uniformly on
<(s) > <(s0) to an analytic function.

Note: Dirichlet series are a special case for λn = log n.

Proof. First note that the first statement implies the second one. Change the variables:
s′ = s − s0 and a′n = e−λn−s0an. The new series converges at 0 and so must have∑M

n=N a
′
n bounded. Then invoke (i).
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Now we will show uniform convergence on −A < Arg(s) < A, with <(s) > δ. This will
suffice, as the uniform limit of analytic functions is analytic. Let ε > 0. Find N0 such
that for n > N0 we have |e−λns| < ε in this domain. Now compute for N,M ≥ N0:

∣∣∣∣∣
M∑

n=N

ane−λns

∣∣∣∣∣
L36
=

∣∣∣∣∣
M−1∑

n=N

(
n∑

k=N

ak

)
(
e−λns − e−λn+1s

)
+

(
M∑

k=N

ak

)
e−λns

∣∣∣∣∣

≤ B ·
M−1∑

n=N

∣∣(e−λns − e−λn+1s
)∣∣+Bε,

where B is the bound on |∑ ak|. Observe:

∣∣e−αs − e−βs
∣∣ =

∣∣∣∣s
∫ β

α

e−xs dx

∣∣∣∣ ≤ |s| ·
∫ β

α

∣∣e−xσ
∣∣ dx =

|s|
σ

(
e−ασ − e−βσ

)
,

where σ = <(s). So we have:
∣∣∣∣∣
M∑

n=N

ane−λns

∣∣∣∣∣ ≤ B
|s|
σ

M−1∑

n=N

(
e−λnσ − e−λn+1σ

)
+Bε

= B
|s|
σ

(
e−λNσ − e−λMσ

)
+Bε

≤ ε

(
B
|s|
σ

+B

)
≤ ε(BK +B),

where |s|
σ
≤ K in our domain. Hence we have uniform convergence.

Proposition 38 Let f(s) =
∑
ane−λns where λn → ∞ is an increasing sequence of

positive real numbers. Suppose that an ∈ R≥0, the series f(s) converges on <(s) > R
for some R ∈ R (and is hence analytic there), and it has an analytic continuation to a
neighbourhood of s = R. Then f(s) converges on <(s) > R− ε for some ε > 0.

Proof. Again we may assume R = 0. Since f is analytic on <(s) > 0 and on |s| < δ,
f is analytic on |s − 1| ≤ 1 + ε. The Taylor series of f around s = 1 converges on all
of |s− 1| ≤ 1 + ε, in particular

f(−ε) =
∞∑

k=0

1

k!
(−1)k(1 + ε)kf (k)(1)

converges. For <(s) > 0, we have

f (k)(s) =
∞∑

n=1

an(−λn)ke−λns.

The term-by-term derivation is allowed by the locally uniform convergence. Thus we
have

(−1)kf (k)(1) =
∞∑

n=1

anλ
k
ne−λn ,
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3.2. Dirichlet L-Functions 23

a convergent series with positive terms. Hence:

f(−ε) =
∞∑

k=0

1

k!
(1 + ε)k

∞∑

n=1

anλ
k
ne−λn =

∑

k,n

anλ
k
ne−λn

1

k!
(1 + ε)k

=
∞∑

n=1

ane−λneλn(1+ε) =
∞∑

n=1

aneλnε.

Note that the order of summation does not matter as all terms are positive. This is a
convergent series, thus the series for f converges at s = −ε and hence on <(s) > −ε
by Prop. 37.

Theorem 39 (i) If an are bounded, then
∑
ann

−s converges absolutely on <(s) > 1
to an analytic function.

(ii) If the partial sums
∑M

n=N an are bounded, then
∑
ann

−s converges on <(s) > 0
to an analytic function.

Proof. (i) Since
∑
n−x converges for real x > 1, analyticity follows from Prop. 37:

∣∣∣
∑ an

ns

∣∣∣ ≤
∑ |an|

nσ
≤ K ·

∑ 1

nx
for x > 1.

(ii) Follows immediately from Prop. 37.

Exercise If
∑
ane−λns and

∑
bne−λns converge on <(s) > σ0 to the same function

f(s), then an = bn for all n.

3.2. Dirichlet L-Functions

Definition Let N ≥ 1 be an integer and ψ : (Z/NZ)× → C× a group homomorphism. 02.11

Extend ψ to a function on Z by

ψ(n) =

{
ψ(nmodN), if (n,N) = 1,
0, else.

Such a function is called a Dirichlet character modulo N . Its L-series (or L-function)
is

LN(ψ, s) =
∞∑

n=1

ψ(n)n−s.

Remark The map ψ : (Z/NZ)× → C× is also sometimes referred to as a Dirich-
let character. Warning : Note that ψ : (Z/NZ)× → C× is simply a 1-dimensional
representation. Number theorists have the (bad) habit of referring to 1-dimensional
representations as characters.
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24 Chapter 3. L-Series

Lemma 40 Let ψ be a Dirichlet character modulo N . Then:

(i) ψ(a+N) = ψ(a), i. e. ψ is periodic.

(ii) ψ(ab) = ψ(a)ψ(b), i. e. ψ is strictly multiplicative.

(iii) The L-series of ψ converges absolutely on <(s) > 1 and there satisfies the Euler
product:

LN(ψ, s) =
∏

p

1

1− ψ(p)p−s
.

Proof. The first two statements are obvious from the definition. The L-series coef-
ficients ψ(n) are bounded, so absolute convergence follows from Thm. 39 (i). For
<(s) > 1 we have:

∑
ψ(n)n−s =

∏

p∈P

(
1 + ψ(p)p−s + ψ(p)2p−2s + . . .

)
=
∏

p∈P

1

1− ψ(p)p−s
,

by (ii), the absolute convergence and the geometric series.

Example Take N = 10, so (Z/NZ)× = {1, 3, 5, 7} ∼= C4 and take ψ(1) = 1, ψ(3) = i,
ψ(7) = −i and ψ(9) = −1. Then:

L10(ψ, s) = 1 +
i

3s
− i

7s
− 1

9s
+

1

11s
+

i

13s
− i

15s
− 1

19s
± . . .

Remark The case ψ = 1 : (Z/NZ)× → C× with ψ(n) = 1 for all n ∈ (Z/NZ)× gives
the trivial Dirichlet character modulo N . In this case:

LN(1, s) = ζ(s) ·
∏

p|N

(1− p−s),

where ζ(s) =
∑
n−s is the Riemann ζ-function.

Theorem 41 Let N ≥ 1 and ψ : (Z/NZ)× → C×.

(i) If ψ is the trivial character, then LN(ψ, s) has an analytic continuation on <(s) >
0 except for a simple pole at s = 1.

(ii) If ψ is non-trivial ist, then LN(ψ, s) is analytic on <(s) > 0.

Proof. (i) Follows from the last remark and the fact that ζ(s) has an analytic con-
tinuation to <(s) > 0, except for a simple pole at s = 1.

(ii) We have a representation of (Z/NZ)× and ψ is non-trivial, so

A+N−1∑

n=A

ψ(n) =
∑

n∈(Z/NZ)×

ψ(n) = 〈ψ,1〉 = 0.

So the sums
∑B

n=A ψ(n) are bounded, and the result follows from Thm. 39 (ii).
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3.3. Primes in Arithmetic Progressions 25

Theorem 42 Let ψ be a non-trivial Dirichlet character modulo N . Then the L-
function does not vanish at s = 1, i. e. LN(ψ, 1) 6= 0.

Proof. Let
ζN(s) :=

∏

χ:(Z/NZ)×→C×

LN(χ, s).

Suppose LN(ψ, s) = 0. Then ζN(s) has an analytic continuation to <(s) > 0 by
Thm. 41, the pole from LN(1, s) having been killed by the zero of LN(ψ, s). On
<(s) > 1, ζN(s) has the absolute convergent Euler product

ζN(s) =
∏

χ

∏

p

1

1− χ(p)p−s
=
∏

p-N

∏

χ

1

1− χ(p)p−s
.

Now ∏

χ

(1− χ(p)T ) = (1− T fp)ϕ(N)/fp ,

where fp is the order of pmodN and ϕ is the Euler totient function. Indeed the χ(p)
are fpth roots of unity, each occuring ϕ(N)/fp times, and

fp−1∏

i=0

(1− ζ ifpT ) = 1− T fp .

So on <(s) > 1, ζN(s) is a Dirichlet series given by

ζN(s) =
∏

p-N

(
1 + p−fps + p−2fps + . . .

)ϕ(N)/fp
.

By Prop. 38, as ζN(s) is assumed analytic on <(s) > 0 and this series has positive
coefficients, the series must converge on <(s) > 0. But for s ≥ 0 real it dominates

∏

p-N

(
1 + p−ϕ(N)s + p−2ϕ(N)s + . . .

)
= LN(1, ϕ(N)s),

which diverges for s = 1/ϕ(N). So we have a contradiction.

3.3. Primes in Arithmetic Progressions

Proposition 43 Let ψ be a Dirichlet character modulo N . 04.11.

(i) The Dirichlet series
∑

p∈P,n≥1

ψ(p)n

n
p−ns

converges absolutely on <(s) > 1 to an analytic function and defines (a branch
of) logLN(ψ, s) there.
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26 Chapter 3. L-Series

(ii) If ψ is non-trivial then
∑ ψ(p)n

n
p−ns is bounded as s → 1. If ψ = 1 then for

s→ 1: ∑

p∈P,n≥1

ψ(p)n

n
p−ns ∼ log

1

s− 1
.

Proof. (i) The series has bounded coefficients, so converges absolutely on <(s) > 1
to an analytic function by Thm. 39 (i). For fixed s with <(s) > 1, we have
∑

p,n

ψ(p)n

n
p−ns =

∑

p

(
ψ(p)p−s +

(ψ(p)p−s)2

2
+

(ψ(p)p−s)3

3
+ . . .

)

=
∑

p

log
1

1− ψ(p)p−s
= log

∏

p

1

1− ψ(p)p−s
= logLN(ψ, s).

Hence
∑ ψ(p)n

n
p−ns is an analytic branch of logLN(ψ, s) on <(s) > 1.

(ii) By Thm. 41, if ψ is non-trivial, then LN(ψ, s) converges to a non-zero value as
s→ 1, so its logarithm is bounded near s = 1. For the trivial character, LN(1, s)
has a simple pole at s = 1 (hence ∼ λ

s−1
), so for s→ 1:

logLN(ψ, s) ∼ log
1

s− 1
.

Corollary 44 (i) If ψ is non-trivial, then
∑
ψ(p)p−s is bounded as s→ 1.

(ii) If ψ = 1 then ∑

p

ψ(p)p−s =
∑

p-N

p−s ∼ log
1

s− 1

as s→ 1. In particular it diverges to infinity as s→ 1.

Remark The second statement implies that there are infinitely many primes.

Proof. We have ∑

p

ψ(p)p−s = logLN(ψ, s)−
∑

p,n≥2

ψ(p)n

n
p−ns,

so it is sufficient to check that the last term is bounded on <(s) > 1. But if <(s) > 1
then
∣∣∣∣∣
∑

p,n≥2

ψ(p)n

n
p−ns

∣∣∣∣∣ ≤
∑

p,n≥2

1

|ps|n =
∑

p

1

|ps|(|p2| − 1)
≤
∑

p

1

p(p− 1)
≤

∞∑

k=1

1

k2
<∞,

as <(s) > 1.

Theorem 45 (Dirichlet’s Theorem on Primes in Arithmetic Progressions) Let a and N
be coprime integers. Then there are infinitely many primes p with p ≡ a mod N .
Moreover, if Pa,N denotes the set of these primes, then for s→ 1:

∑

p∈Pa,N

1

ps
∼ 1

ϕ(N)
log

1

s− 1
.
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Proof. The first statement follows from the second since log 1
s−1
→ ∞ as s → 1.

Consider the (class-)function

Ca,N : (Z/NZ)× −→ C× with Ca,N(n) =

{
1, if n = a,
0, else.

Then

〈Ca,N , χ〉 =
1

ϕ(N)

∑

n∈(Z/NZ)×

Ca(n)χ(n) =
χ(a)

ϕ(N)
,

so Ca =
∑

χ
χ(a)
ϕ(N)

χ. Hence:

∑

p∈Pa,N

1

ps
=
∑

p∈P

Ca,N(p)p−s =
∑

χ:(Z/NZ)×→C×

χ(a)

ϕ(N)

∑

p

χ(p)

ps
.

By Cor. 44, each term on the RHS is bounded as s→ 1 except for χ = 1, and

1(a)

ϕ(N)
=
∑

p

1(p)

ps
=

1

ϕ(N)

∑

p-N

1

ps
∼ 1

ϕ(N)
log(s− 1),

as s→ 1.

3.4. An Alternative View on Dirichlet characters

Remark We have an isomorphism

(Z/NZ)×
∼−→ Gal(Q(ζN)/Q), a 7−→ σa with σa(ζN) = ζaN .

If q is inQ(ζN) above p then σp = Frobq/p. Thus for any q/p we have the correspondence

1

1− ψ(p)p−s
←→ 1

1− ψ(Frobq/p)p−s
.

Theorem 46 (Hecke) Let F/K be a Galois extension of number fields with abelian
Galois group Gal(F/K) and a homomorphism ψ : Gal(F/K)→ C×. Then

L∗(ψ, s) =
∏

pCOK
unramified in F/K

1

1− ψ(Frobp)N(p)−s

has an analytic continuation to C, except for a single pole at s = 1 when ψ = 1.

Proof. Way beyond the scope of this course.

Remark When K = Q and F = Q(ζn), this recovers Thm. 41.
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3.5. Artin L-Functions

Definition Let I ≤ D be finite groups and % a D-representation. 06.11.

(i) The I-invariant vectors of % are denoted by %I = {v ∈ % : g(v) = v ∀ g ∈ I}.
(ii) If I C D then %I is a subrepresentation. (If v ∈ %I , g ∈ D and i ∈ I, then

i(gv) = (ig)v = gi′v = gv for i′ ∈ I, so gv ∈ %I .)
(iii) If λi ∈ C and gi ∈ D, write

det
(∑

λigi|%
)

:= det
%

(∑
λigi

)
.

Equivalently, viewing % : D → GLn(C), then

det
(∑

λigi|%
)

= det
(∑

λi%(gi)
)
,

e. g. characteristic polynomial of g ∈ D on % is det(T − g|%).

Warning : There is a constant abuse of notation by denoting both the vector space and
the homomorphism D → GLn(C) by %.

Definition Let F/K be a Galois extension of number fields and % a Gal(F/K)-
representation. Let p be a prime of K. Choose a prime q of F above p, and choose
an element Frobp ∈ Dq/p which maps to Frobq/p ∈ Dq/p/Iq/p, i. e. that acts as the
Frobenius automorphism on the residue field. Then the local polynomial of % at p is

Pp(F/K, %, T ) = Pp(%, T ) = det(1− T · Frobp |%Ip),

where Ip = Iq/p.

Remark 47 This is essentially the characteristic polynomial Φq/p(%, T ) of Frobp on %:
If Pp(%, T ) = 1 + a1T + a2T

2 + . . .+ anT
n, then Φq/p(%, T ) = T n + a1T

n−1 + a2T
n−2 +

. . .+ an. Moreover, if dim % = 1, then:

Pp(%, T ) =

{
1− %(Frobp)T, if %Ip = %,
1, if %Ip = 0.

Lemma 48 The local polynomial Pp(%, T ) is independent of the choice of q and the
choice of Frobp.

Proof. For fixed q, the independence of choice of Frobp is clear: two choices differ by
an element of Ip, which acts trivially on %Ip . If q′ is a different prime over q, write
q′ = g(q) for some g ∈ Gal(F/K) and observe that Frob′p = g Frobp g

−1 is a “lift of
the Frobenius for q′/p”. The eigenvalues of Frobp on %Iq′p = %gIqpg

−1
= g(%Ip) are the

same as of Frobp on %Ip . Hence their characteristic polynomials agree, and so Pp(%, T )
is independent of the choice of q.
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3.5. Artin L-Functions 29

Definition Let F/K be a Galois extension of number fields and % a representation of
Gal(F/K). The Artin L-function of % is defined by the Euler product

L(F/K, %, s) = L(%, s) =
∏

pCOK

1

Pp(%,N(p)−s)
.

The polynomial Pp(%, T ) has form 1 − (a1T + a2T
2 + . . .), so we can write (ignoring

convergence)

1

Pp(%, T )
= 1 + (a1T + a2T

2 + . . .) + (a1T + a2T
2 + . . .)2 + . . . = 1 + apT + ap2T

2 + . . .

Formally substituting this into the product gives the expression (Artin L-series):

L(%, s) =
∏

p

(1 + apN(p)−s + ap2N(p)−2s + . . .) =
∑

06=nCOK

anN(n)−s

for suitable an ∈ C. Note that grouping ideals with equal norm yields an expression
for L(%, s) as an ordinary Dirichlet series.

Lemma 49 The L-series expression for L(%, s) agrees with the Euler product on
<(s) > 1, where they converge absolutely to an analytic function.

Proof. It suffices to prove that
∏

pCOK

(
1 + apN(p)−s + ap2N(p)−2s + . . .

)

converges absolutely on <(s) > 1: this justifies rearrangement of terms and the Dirich-
let series expression for L(%, s) then proves analyticity (Prop. 37). The polynomial
Pp(%, T ) factorises over C as

Pp(%, T ) = (1− λ1T )(1− λ2T ) · · · (1− λkT )

for some k ≤ dim % and |λi| = 1. So the coefficients of

1

Pp(%, T )
=

1∏
(1− λiT )

= 1 + apT + ap2T
2 + . . .

are bounded in absolute value by those of

1

(1− T )dim %
= (1 + T + T 2 + . . .)dim %.

Hence:

∏

p

∑

n

|apn| · |N(p)−ns| ≤
∏

p

1

(1− |N(p)−ns|)dim %
≤
∏

p

(
1

1− |p−s|

)dim %

≤
(∏

p∈P

1

1− |p−s|

)dim %·[K:Q]

= ζ(σ)dim %·[K:Q] <∞,

where p is the residue character of p and σ = <(s).
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Example (i) Let K = Q, F arbitrary and % = 1. Then 09.11.

L(1, s) =
∏

p

1

1− p−s = ζ(s).

(ii) Let K and F be arbitrary and % = 1 then

L(F/K,1, s) =
∏

pCOK

1

1−N(p)−s
=: ζK(s)

is called the Dedekind ζ-function of K.

(iii) Let K = Q, F = Q(ζN) and % a 1-dimensional representation of Gal(Q(ζN)/Q).
Set ψ : (Z/NZ)× → C× to be ψ(n) = %(σn), where σn(ζN) = ζnN . Then

L(%, s) =
∏

p:%(Ip)=1

1

1− %(Frobp)p−s
=

∏

p:%(Ip)=1

1

1− ψ(p)p−s

= LN(ψ, s)
∏

p|N,%(Ip)=1

1

1− %(Frobp)p−s
,

e. g. if % is faithful (so %(Ip) = 1 implies Ip = {1}) then L(%, s) = LN(ψ, s).

Proposition 50 Let F/K be a Galois extension of number fields and % a Gal(F/K)-
representation.

(i) If %′ is another Gal(F/K)-representation, then

L(%⊕ %′, s) = L(%, s) · L(%′, s).

(ii) If N C Gal(F/K) lies in ker(%), so that % comes from a representation %′′ of
Gal(F/K)/N ∼= Gal(FN/K), then

L(F/K, %, s) = L(FN/K, %′′, s).

(iii) Artin Formalism: If % = Ind
Gal(F/K)
H %′′′ for a representation %′′′ of H ≤

Gal(F/K), then
L(F/K, %, s) = L(F/FH , %′′′, s).

Proof. Sufficient to check each statement prime-by-prime for the local polynomials.

(i) Clear. (Note: (%⊕ %′)Ip = %Ip ⊕ %′Ip .)
(ii) We have already proved this – Prop. 34 (for the characteristic polynomial Φ) and

Rmk. 47 (for the local polynomial).

(iii) Straight from the definitions using the following lemma.

Lemma 51 (insert as Thm. 28 (vi)–(viii)) Let F/K be a Galois extension of number
fields, G = Gal(F/K), N CG, primes pCOK, sCOFN and qCOF , where q lies above
s and s lies above p.
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3.5. Artin L-Functions 31

(i) Ds/p = (Dq/pN)/N .

(ii) Is/p = (Iq/pN)/N .

(iii) If Frobp ∈ Dq/p acts as the Frobenius automorphism on OF/q, then FrobpN ∈
Ds/p acts as the Frobenius on OFN/s.

Proof. (i) Dq/p and N both preserve s, so Ds/p ≥ (Dq/pN)/N . But

|Ds/p| = es/pfs/p =
eq/pfq/p
eq/sfq/s

=
|Dq/p|
|Dq/s|

=
|Dq/p|
|Dq/p ∩N |

=
|Dq/pN |
|Dq/p|

.

(ii) Similarly, with e instead of ef .

(iii) Clear as OFN/s is a subfield of OF/q.

Theorem 52 Let F/K be a Galois extension of number fields and % a 1-dimensional
Gal(F/K)-representation. Then:

(i) L(F/K, %, s) has an analytic continuation to C except for a single pole at s = 1
for % = 1 (rephrasing Thm. 46).

(ii) If % 6= 1 then L(%, 1) 6= 0.

Proof. By Prop. 50 (ii), we may assume that F = F ker %. In this case % is faithful and
G = Gal(F/K) must be abelian (% maps it isomorphically to a subgroup of C×).

(i) Is exactly the statement of Thm. 46.

(ii) By Prop. 50 (i) and (ii), we have

ζF (s) = L(F/K, IndG{1} 1, s) =
∏

χ∈Ĝ

L(F/K, χ, s) = ζK(s)
∏

χ∈Ĝ\{1}

L(F/K, χ, s),

where Ĝ denotes the set of irreducible representations of G. As both ζ-functions
have a simple pole at s = 1 and each L(F/K, χ, s) is analytic, it follows that no
L(F/K, χ, s) can have a zero there.

Example Suppose α ∈ OK and αmod p is a square in OK/p for all primes p (e. g.
α ∈ Z with αmod p always a square). Claim: α is a square in OK .
Otherwise by Kummer-Dedekind applied toX2−α, all p - 2αN split in F = K(

√
α)/K,

where N =
[
OF : OK [

√
α]
]
. Thus

ζF (s) =
∏

qCOF

1

1−N(q)−s
=

∏

pCOK , p-2Nα

(
1

1−N(q)−s

)2

·
∏

qCOF , q|2Nα

1

1−N(q)−s
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= ζK(s)2 ·
∏

q|2Nα

1

1−N(q)−s
·


 ∏

p-2Nα

1

1−N(q)−s



−1

has a simple pole at s = 1.

Exercise Prove this without ζ-functions.

Example If F/K is cyclic of prime degree p, then infinitely many primes of K remain
prime in F : Otherwise ζF (s) = ζK(s)p. Euler factor form ramified and inert primes. By
Example Sheet 1, Question 10 there are only finitely many ramified and inert primes.
All factors are not equal to 0 or ∞ at s = 1, so ζF (s) would have a pole of order p.

Exercise Deduce that if f(X) ∈ Z[X] is irreducible of prime degree, then f(X) mod p
is irreducible for infinitely many primes p.

3.6. Induction Theorems

Theorem 53 (Artin’s Induction Theorem) Let G be a finite group and % a G-11.11.

representation. Then for some n ≥ 1 there are some subgroups Hi, H
′
j ≤ G and

1-dimensional representations ψi, ψ′j of Hi, H
′
j, respectively, such that

%⊕n ⊕
⊕

i

IndGHi ψi
∼=
⊕

j

IndGH′j ψ
′
j.

If 〈%,1〉 = 0 then all ψi, ψ′j can be chosen to be non-trivial.

Proof*. Write χT for the character of T . We begin with the first statment. Let V
be the Q-vector space of Q-linear combinations if characters of G (in the space of
class functions). Let W be the subspace spanned by χIndGH T ; for all cyclic H ≤ G
and 1-dimensional H-representations T . It will suffice to prove that V = W , for then
χ% =

∑
λiχIndHi Ti

, with λi ∈ Q. Hence nχ% =
∑
kiχIndHi Ti

, with n, ki ∈ Z, and so

nχ% +
∑

aiχIndHi Ti
=
∑

bjχIndHj Tj
,

with ai, bj ∈ N as required.

Suppose ψ ∈ W⊥, i. e.
〈
ψ, χIndGH T

〉
= 0 for all cyclic H and 1-dimensional T . By

Frobenius Reciprocity we have
〈
ResGH ψ, χT

〉
H

= 0 for all 1-dimensional T of H. Thus
ResGH ψ = 0. In particular, taking H = 〈g〉, shows that ψ(g) = 0. This holds for all
g ∈ G, so ψ = 0. We obtain W⊥ = 0, so V = W as claimed.

For the second claim take W to be spanned by χIndHi
with H cyclic and T 6= 1 to

be 1-dimensional. It suffices to check that every ψ ∈ W⊥ isx a multiple of the trivial
character. If ψ ∈ W⊥, by Frobenius Reciprocity we know

〈ψ, χIndT 〉 =
〈
ResGH ψ, χT

〉
= 0
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for all cyclic H and 1-dimensional T 6= 1. Hence ResGH ψ is a multiple of 1H . Taking
H = 〈g〉 shows that ψ(g) = ψ(id). This is true for all g ∈ G, so ψ is a multiple of
1G.

Corollary 54 Let F/K be a Galois extension of number fields and % a Gal(F/K)-
representation.

(i) For some n ≥ 1, L(%⊕n, s) has a meromorphic continuation to C. If 〈%,1〉 = 0 it
is analytic and non-zero at s = 1.

(ii) If % 6= 1 is irreducible, then L(%, s) has an analytic continuation to s = 1, where
the function does not vanish.

Proof. (i) For G = Gal(F/K) write

%⊕n ⊕
⊕

i

IndGHi ψi
∼=
⊕

j

IndGH′j ψ
′
j

as in Artin’s Induction Theorem. It follows from Prop. 50 that on <(s) > 1 we
have

L(%, s)n =

∏
j L(Indψ′j, s)∏
i L(Indψi, s)

=

∏
j L(F/FH′j , ψ′j, s)∏
i L(F/FHi , ψi, s)

.

By Thm. 52 the RHS has a meromorphic continuation to C. If 〈%,1〉 = 0 the ψi
and ψ′j can be taken to be non-trivial in which case the RHS is also analytic and
non-zero at s = 1.

(ii) L(%, s)n is analytic and non-zero at s = 1 for some n. On <(s) > 1 the function
L(%, s) is an analytic branch of the nth root of L(%, s)n, and hence has an analytic
continuation to s = 1 (this not being a branch point).

Theorem (Brauer’s Induction Theorem*) Let G be a finite group and % a G-
representation. Then there are elementary subgroups (i. e. products of cyclic and p-
groups) Hi, H

′
j ≤ G and 1-dimensional representations ψi, ψ′j of Hi, H

′
j respectively,

such that
%⊕

⊕

i

IndHi ψi
∼=
⊕

j

IndH′j ψ
′
j.

Corollary (Artin-Brauer*) L(%, s) has a meromorphic continuation to C.

Theorem (Solomon’s Induction Theorem*) Let G be a finite group. There are soluble
(in fact quasi-elementary) subgroups Hi, H

′
j, such that:

1⊕
⊕

i

IndGHi 1
∼=
⊕

j

IndGH′j 1.

3.7. Density Theorems

Definition Let S be a set of primes. Then S has Dirichlet density α if 13.11.
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lim
s↘1

∑
p∈M p−s

log 1
s−1

= α.

Example (i) The set of all primes has density 1 (rather by Euler than by Dirichlet).

(ii) The set Pa,N = {p ∈ P : p ≡ a mod N} has density 1/ϕ(N) whenever
gcd(a,N) = 1.

Definition For F/Q Galois, p a prime of Q unramified in F , write Frobp ∈ Gal(F/Q)
for the Frobenius element Frobq/p for some prime qCOF above p. Note that it lies in
a well defined conjugacy class of Gal(F/Q) as Frobq′/p = xFrobq/p x

−1 for q′ = qx.

Example Let F = Q(ζN) and σa ∈ Gal(F/Q) with σa(ζN) = ζaN . For p - N we have
Frobp = σa iff p ≡ a mod N (as Frobp(ζN) ≡ ζpN mod q and hence Frobp(ζN) = ζpN).
So Dirichlet’s Theorem shows that PN,σ = {p - N : Frobp = σ} has Dirichlet density
|Gal(F/Q)|−1, i. e. Frobp are “uniformly distributed” among Gal(F/Q).

Theorem 55 (Chebotarev’s Density Theorem) Let F/Q be a finite Galois extension
and C a conjugacy class of Gal(F/Q). Then

PC = {p ∈ P : p unramified in F/Q s. t. Frobp ∈ C}

has Dirichlet density |C|/|Gal(F/Q)|.

Proof. For % a representation of Gal(F/Q) let

L∗(%, s) =
∏

p unram.

Pp(%, p
−s)−1.

By Example Sheet 1, Question 10 only finitely many primes ramify in F/Q, so by
Cor. 54 we know that L∗(%, s) has neither a pole nor a zero at s = 1 if % 6= 1 irreducible,
but L∗(%, s) has a simple pole at s = 1 for % = 1. Now write χ% for the character of
%. If p is unramified in F/Q (which implies % = %Ip) and λ1, . . . , λd are the eigenvalues
(with multiplicity) of Frobp on %. Then

log
1

Pp(%, p−s)
= log

1∏
i(1− λip−s)

=
∑

i

log
1

1− λip−s

=
∑

i

λip
−s +

1

2

∑

i

λ2
i p
−2s + . . . =

∑

n≥1

χ%(Frobnp )

n
p−ns.

The Dirichlet series ∑

p unram.

∑

n≥1

χ%(Frobnp )

n
p−ns

has bounded coefficients, so defines an analytic branch of logL∗(%, s) on <(s) > 1 (by
proof of Prop. 43). Now the series is bounded on <(s) > 1 by 2 dim %

∑
1
k2

(see proof
of Cor. 44). So by using the definition we obtain that

f%(s) =
∑

p unram.

χp(Frobp)p
−s
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is bounded as s→ 1 on <(s) > 1 if % 6= 1 is irreducible and

f1(s) =
∑

p unram.

p−s ∼ log
1

s− 1

as s→ 1. Finally, let IC(g) be 1 if g ∈ C and 0 else. Then
∑

p∈PC

p−s =
∑

p unram.

IC(Frobp)p
−s =

∑

p

〈χp, IC〉 f%(s)

=
|C|

|Gal(F/Q)|f1(s) +
∑

% 6=1

〈χp, IC〉 fp(s).

Hence PC has Dirichlet density |C|
|Gal(F/Q)| .

Corollary 56 Let f ∈ Z[X] be a monic irreducible polynomial and G = Gal(f) the
Galois group of the splitting field of f . Then the set of primes p, such that f mod p
factorises as a product of irreducible polynomials of degree d1, . . . , dr has density

|{g ∈ G : g has cycle type (d1, . . . , dr) on the roots of f}|
|G| .

Proof. The polynomial f mod p has a repreated root (in Fp) modulo finitely many
primes p (these divide disc f , the discriminant). For the rest, Frobp acts as an element of
cylce type (d1, . . . , dr) where these are the degrees of the irreducible factors of f mod p.

Example Let f be an irreducible quintic polynomial with Galois group S5. Then:

(i) The primes p, such that f split into linear factors mod p have density 1
120

.

(ii) The primes p, such that f mod p is irreducible have density 1
120
·

#{5 cycles in S5} = 1
5
.

(iii) The primes p, such that f mod p splits into a product of a quadratic and a cubic
have density 20

120
= 1

6
.

Corollary 57 If f ∈ Z[X] is irreducible and monic with deg f > 1, then f mod p has
no root in Fp for infinitely many primes p.

Proof. It is sufficient to prove that there exists a g ∈ Gal(f) that fixes no root of f .
Let G = Gal(f). Then |Gα| = |G|/ deg f (orbit-stabiliser) and each stabiliser contains
the identity, so ∣∣∣∣∣

⋃

α root

Gα

∣∣∣∣∣ < deg f · |G|
deg f

.

Hence there is g ∈ G, that fixes no root α.
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4. Class Field Theory

4.1. The Frobenius Element

Definition An extension F/K is abelian if it is Galois and Gal(F/K) is abelian.16.11.

Let F/K be abelian and p C OK a prime of K unramified in F/K. Write Frobp =
Frobp(F/K) = Frobq/p for any prime q C OF of F above p. Note that this is a well-
defined element of Gal(F/K). A different q would yield a conjugate element, but
Gal(F/K) is abelian.

Remark 58 Note that p (unramified) splits completely iff Frobp = id (or equivalently
iff fp = 1). Note also that if F/L/K is an intermediate field, then Frobp(L/K) is the im-
age of Frobp(F/K) under the projection Gal(F/K)→ Gal(L/K) (cf. Lemma 51 (iii)).
In particular, p splits completely in L iff Frobp ∈ Gal(F/L).

4.2. Cyclotomic Extensions

Definition An extension F/K is called cyclotomic if there is N ≥ 1 such that F ⊆
K(ζN), where ζN is a primitive N th root of unity. Note that cyclotomic extensions are
abelian:

Gal(K(ζN)/K) ≤ (Z/NZ)×.

Lemma 59 Let F = K(ζN) and p - N a prime of K. Then p is unramified in F and
Frobp is the unique element with Frobp(ζN) = ζ

N(p)
N .

Proof. The polynomial XN − 1 has no repeated roots in characteristic p - N (being co-
prime to d

dX
(XN−1)). Let q in F be a prime above p. Then Iq/p fixes each ζN mod q (by

definition), and hence can only contain the identity element (as ζN mod q are distinct).
Thus p is unramified. By Frobq/p(ζN) ≡ ζ

N(p)
N mod q we obtain Frobq/p(ζN) = ζ

N(p)
N

(this being the only N th root of unity with reduction modulo q).

Lemma 60 Let F = Q(ζN).

(i) A prime p ramifies in F/Q iff p | N .

(ii) A prime p splits completely in F/Q iff p ≡ 1 mod N .

(iii) We have Frobp1 = Frobp2 iff p1 ≡ p2 mod N , where p1, p2 - N .
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(iv) For primes pi, p′j with pi, p′j - N we have:
∏

i

Frobpi =
∏

j

Frobp′j ⇐⇒
∏

i

pi ≡
∏

j

p′j mod N.

(v) The map

ϕ :
{
a
b
∈ Q : a, b ∈ N, (a,N) = (b,N) = 1

}
−→ Gal(F/Q),∏

pi∏
p′j
7−→ (

∏
Frobpi)

(∏
Frobp′j

)−1

is a surjective homomorphism with kernel
{
a
b

: a ≡ b mod N
}
.

Proof. (i) By Lemma 59 and second example after Thm. 20.

(ii) p splits completely iff p - N and Frobp = id iff p - N and ζpN = ζN iff p ≡ 1
mod N .

(iii) Straight from (iv).

(iv) (
∏

Frobpi) (ζN) = ζ
∏
pi

N and similarly for p′j.

(v) This is clearly a well-defined homomorphism. The kernel is correct by (iv). The
map is surjective by Dirichlet’s Theorem on Primes in Arithmetic Progressions.

Theorem 61 Let F/Q cyclotomic with F = Q(ζN)H .

(i) There is N ≥ 1 and H ≤ (Z/NZ)× such that:

(a) A prime p with p - N splits completely in F iff pmodN ∈ H.

(b) For primes pi, p′j with pi, p′j - N we have:

∏

i

Frobpi =
∏

j

Frobp′j ⇐⇒
∏
pi∏
p′j
∈ H.

(c) The map

ϕ :
{
a
b
∈ Q : a, b ∈ N, (a,N) = (b,N) = 1

}
−→ Gal(F/Q),∏

pi∏
p′j
7−→ (

∏
Frobpi)

(∏
Frobp′j

)−1

is a surjective homomorphism with kernel
{
a
b

modN ∈ H
}
.

(ii) There is a least N that works; any other N ′ will have N | N ′. For this N we
have p | N iff p ramifies in F .

(iii) For every N ≥ 1 and H ≤ (Z/NZ)× there is a unique cyclotomic field giving rise
to (N,H) as above.

Proof. (i) If F = Q(ζN)H take these N and H.
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(a) Follows from Remark 58 and Lemma 59.

(b) Ditto.

(c) Follows from (b) and Lemma 60 (v).

(ii) If N1 and N2 both work, then ϕ(x) = ϕ(y) for x ≡ y mod gcd(N1, N2). So we
can take N = gcd(N1, N2) as well. Assuming (iii) we have F = Q(ζN)H , so p
ramifies iff Q(ζN)H * Q(ζm) for any m coprime to p (exercise).

(iii) Take F = Q(ζN)H . Uniqueness: If F1 6= F2 with F1, F2 ⊆ Q(ζNM) then Fi =
Q(ζNM)Hi withH1 6= H2. Thus different primes split completely in F1 and F2.

Example (i) Let F = Q(ζ7), N = 7, (Z/NZ)× ∼= C6 and H = {1}. Then the18.11.

primes that split completely in F/Q are p ≡ 1 mod 7; the only ramified prime is
7. For the Frobenius elements we have Frob2 = Frob23 = Frob37 = (Frob3)2 etc.

(ii) Let F = Q(
√
−1) = Q(ζ7)H , N = 7 and H = {1, 2, 4} ∼= C3 (the squares

in (Z/7Z)×). Then the primes that split completely in F/Q are p ≡ 1, 2, 4
mod 7; the only ramified prime is 7. For the Frobenius elements we have Frob2 =
Frob11 = Frob29 = Frob3 ·Frob15 = id etc. and Frob3 = Frob5 = Frob17 =
(Frob3)3, which is the complex conjugation.

Proposition 62 Let F = K(ζN).

(i) If p = (α) is a prime of K with α ≡ 1 mod N and σ(α) > 0 for each real
embedding σ : K ↪→ R then p splits completely in F/K.

(ii) Define
ϕ :
⊕

p-N

pZ −→ Gal(F/K)

by ϕ(p) = Frobp. This gives a homomorphism whose kernel contains

P 1
N =

{
(α)(β)−1 : α ≡ β mod N, σ

(
α

β

)
> 0 ∀ σ : K ↪→ R

}
.

Equivalently: if (α)a = (β)b with α ≡ β mod N and σ
(
α
β

)
> 0 for all embeddings

σ then ϕ(a) = ϕ(b).

Proof. (i) If α = 1 +Nt with t ∈ OK then

N(α) =
∏

σ:K↪→C

σ(α) =
∏

σ:K↪→C

(1 +Nσ(t)) = 1 +Nλ,

where λ is an algebraic integer in Q, i. e. λ ∈ Z. Moreover σ(1 +Nt) > 0 for all
embeddings σ : K ↪→ R and σ(1 +Nt)σ̄(1 +Nt) > 0 for all pairs σ, σ̄ of complex
conjugates. Thus N(α) > 0 and so

N((α)) = |N(α)| = N(α) = 1 +Nλ ≡ 1 mod N.

Hence Frobp(ζN) = ζ
N(p)
N = ζ1+Nλ

N = ζN and so p splits completely.
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(ii) Similarly, if α = k+Nt, then N(α) = N(k) +Nλ with λ ∈ Z. So α ≡ β mod N
and hence N(α) ≡ N(β) mod N . If also σ

(
α
β

)
> 0 for all σ then N

(
α
β

)
> 0 and

so N((α)) ≡ N((β)) mod N . Thus we have ζN((α))
N = ζ

N((β))
N .

Example Let K = Q(i), and F = K(ζ3). Then OK = Z[i] is a UFD. If q = (α) with
α = 1 + 3t, t ∈ Z[i], then

N(α) = (1 + 3t)(1 + 3t) = 1 + 3(t+ t̄) + 9tt̄ ≡ 1 mod 3,

so ζN((α))
3 = ζ

N(α)
3 = ζ3. Other cases:

N(2 + 3t) = 4 + 3(. . .) ≡ 1 mod 3,

N(i+ 3t) = i(−i) + 3(. . .) ≡ 1 mod 3,

N(2i+ 3t) = 4 + 3(. . .) ≡ 1 mod 3,

N((1 + i) + 3t) = (1 + i)(1− i) + 3(. . .) ≡ 2 mod 3,

N((1 + 2i) + 3t) = 5 + 3(. . .) ≡ 2 mod 3,

N((2 + 2i) + 3t) = 8 + 3(. . .) ≡ 2 mod 3.

So let p = (α). If α ≡ ±1,±i mod 3 then Frobp = id; if α ≡ ±1 ± i mod 3 then
Frobp : ζ3 7→ ζ−1

3 . Now let a =
∏

pi = (α). If α ≡ ±1,±i mod 3 then
∏

Frobpi = id;
if α ≡ ±1± i mod 3 then

∏
Frobpi : ζ3 7→ ζ−1

3 . Note that (α) = (−α) = (iα) = (−iα),
so ±1 and ±i must give equal Frobp, and similar for ±1± i.

Example Let K = Q
(√
−5
)
with OK = Z

[√
−5
]
, and F = K(ζ3). The residues

modulo 3 are ±1, ±
√
−5, ±1±

√
−5, and 0. Of these, ±1±

√
−5 are not coprime to

(3). (Note that (3) = p3p
′
3 = (3, 1 +

√
−5)(3, 1 −

√
−5) in OK , so OK/(3) ∼= F3 × F3

and (OK/(3))× ∼= C2 × C2.) We have

N(±1 + 3t) ≡ 1 mod 3, and N(±
√
−5 + 3t) ≡ 2 mod 3.

So let p = (α) prime. If α ≡ ±1 mod 3 then Frobp = id; if α ≡ ±
√
−5 mod 3

then Frobp : ζ3 7→ ζ−1
3 . But C`K = C2, so what about non-principal ideals? Take

p2 = (2, 1 +
√
−5), the prime above 2. As p2

2 = (2), we have N(p2)2 = N(p2
2) = 4,

and so N(p2) = 2. Hence Frobp2 : ζ3 7→ ζ2
3 = ζ−1

3 . If p is non-principal then pp2 is, so
pp2 = (α). Thus

Frobp =

{
id, α ≡ ±

√
−5 mod 3,

ζ3 7→ ζ−1
3 , α ≡ ±1 mod 3,

i. e. Frobp is determined by the image of p in the ideals modulo prime ideals that are
congruent to 1 modulo 3 (this is isomorphic to C2 × C2).

4.3. Class Fields

Definition Let K be a number field. A modulus m is a formal product of an ideal of
OK and some real embeddings (“real places”) of K:

m =
∏

i

pnii
∏

j

σj = m0 ·m∞.
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Write
Im =

⊕

p-m0

pZ

for the group of fractional ideals coprime to m0, and P 1
m for the ideals of the form

(α)(β)−1 with α ≡ β mod m0 and σ
(
α
β

)
> 0 for all σ | m∞. Set Pm0 to be the20.11.

subgroup generated by the principal ideals coprime to m0 = {(α)(β)−1} and Pm to be
the principal ideals with σ

(
α
β

)
> 0 for all σ | m∞.

Remark Note Im = Im0 . We have:

Im/Pm =
Im

P1 ∩ Im
=
ImP1

P1

≤ C`K ,

where P1 are the principal ideals. In fact we have equality. Moreover Pm0/Pm is
a subgroup of Z/2Z#σ|m∞ (again it is in fact equality). We have an isomorphism
Pm/P

1
m
∼= (OK/m0)×/O×K via (α) 7→ αmodm0. Thus Im/P 1

m is finite.

Definition A congruence subgroup H for m is a subgroup of Im containing P 1
m. An

extension F/K is a class field for (m, H) if the primes p - m of K that split completely
in F are exactly those that lie in H.

Example Let K = Q.

(i) Take m = N · ∞, where ∞ is the unique embedding Q ↪→ R. Then

Im =

{∏
pi∏
p′j

: pi, p′j coprime to N
}
∼=
{a
b

: a, b ∈ N coprime to N
}
,

and P 1
m is the subgroup generated by (a)

(b)
with a ≡ b mod N , and a

b
> 0 (equiva-

lently to α ≡ 1 mod N , where α ∈ Q>0). Then we have Im/P 1
m = (Z/NZ)×.

(ii) Take m = N . Then P 1
m is the subgroup generated by (a) with a ≡ 1 mod N ,

and Im/P 1
m
∼= (Z/NZ)× /{±1}.

(iii) Take m = 5 ·∞. Then H = P 1
m has field Q(ζ5). Now let P 1

m ≤ H ≤ Im be of index
2. Then H has class field Q

(√
5
)
. (Note that H is given by {1, 4} ≤ (Z/5Z)× =

Im/P
1
m.)

Example (i) Let K = Q(i) and m = (3). Then Im are the (fractional) ideals
coprime to 3, and P 1

m are those ideals generated by α ≡ 1 mod 3. So Im/P 1
m
∼=

(Z[i]/(3))× /{±1,±i} ∼= C2, and F = K(ζ3) is a class field for (m, P 1
m).

(ii) Let K = Q
(√
−5
)
and m = (3) = p3p

′
3. Since p2 is a non-principal prime ideal

above 2, we have
Im/P

1
m
∼= C2 × C2 =

〈
[p2], [

√
−5]
〉
.

Take H =
{

id, [p2(
√
−5)]

}
. Then F = K(ζ3) is a class field for (m, H).
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4.4. The Main Theorem of Class Field Theory

Theorem 63 (Takagi-Artin) Let K be a number field.

(i) Every abelian extension F/K is a class field for some (m, H).

(ii) Every (m, H) has a unique class field F . Moreover F is abelian over K.

(iii) Among (m, H) in (i) there is a minimal one, in the sense that other (m′, H ′) have
m | m′. The minimal modulus m is called the conductor of F/K. The primes that
ramify in F/K are precisely those that divide the conductor; moreover the real
embeddings in the conductor are precisely those that extend to complex embeddings
in F .

(iv) Artin Reciprocity Law: If F/K is a class field for (m, H) then the Artin map

ϕ : Im/P
1
m −→ Gal(F/K), ϕ(p) := Frobp,

is a surjective homomorphism with kernel H.

Proof. Beyond the scope of this course.

Corollary 64 (Kronecker-Weber Theorem) All abelian extensions of Q are cyclotomic.

Proof. By Thm. 61, cyclotomic fields are class fields for all possible moduli m = N ·∞
and congruence subgroups H. So by uniqueness (in (ii)) and (iii) they exhaust all
abelian extensions which are imaginary (so no subset of R). Hence a general abelian
extension F/Q has F (i) cyclotomic, so F is cyclotomic as well.

Lemma 65 Let m = m0 =
∏

i p
ni
i be an ideal of OK, with pi distinct primes. 23.11.

(i) We have an isomorphism

(OK/m)×/O×K
∼−→ Pm/P

1
m, α 7−→ (α),

where Pm is the subgroup of Im generated by principal ideals.

(ii) We have an isomorphism

(OK/m)×
∼−→
∏

i

(OK/pnii )×, x 7−→ (xmod pn1
1 , . . . , xmod pnrr ).

(iii) If p is prime then (OK/pn)× ∼= Cpk−1 ×A, where pk = N(p) and A is an abelian
group of order pk(n−1).

Proof. (i) Let ψ : (OK/m)× → Pm/P
1
m by ψ(α) = (α). Then ψ is well-defined: if

α ≡ β mod m then (α)(β)−1 ∈ P 1
m by definition. For the kernel we see that

(α) ∈ P−1
m iff there is β ≡ γ mod m with (α) = (β)(γ)−1 iff there is δ ≡ 1

mod m such that (α) = (δ) iff there is u ∈ O×K such that α ≡ u mod m. Hence
kerψ = O×K mod m. Moreover, if β and γ are coprime to m, pick δ ∈ OK such
that γδ ≡ 1 mod m by the Chinese Remainder Theorem (Thm. 12). Then

ψ(βδ) = (βδ) = (β)(γ)−1(γδ) = (β)(γ)−1(Pm)−1,
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thus ψ is surjective.

(ii) This follows from the Chinese Remainder Theorem (Thm. 12).

(iii) By unique factorisation the only ideals of OK containing pn are pl for l ≤ n, so
OK/pn has a unique maximal ideal p/pn. So all x /∈ p/pn are invertible, hence

∣∣(OK/pn)×
∣∣ = (pk − 1)pk(n−1).

(OK/pn)× projects onto (OK/p)× ∼= Cpk−1, hence (OK/pn)× ∼= Cpk−1 × A.

Example Let K = Q(i). If m = (1) then Im/P
1
m = 1 as |C`K | = 1. The class field

of (m, P 1
m) is K itself. By Thm. 63 (iii) if F/K is an abelian extension unramified at

all primes, it is a class field of ((1), H). Hence there are no such extensions of Q(i)
(except for Q(i) itself).

Example Let K = Q(i). If m = (7) then we have by Lemma 65:

Im/P
1
m
∼= (Z[i]/(7))× /{±1,±i} ∼= C48/C4

∼= C12.

Take Im ⊇ H ⊇ P 1
m with Im/H ∼= C4. Explicitly it is given by the classes of

1, . . . , 6, i, . . . , 6i ∈ (Z[i]/(7))×. The class field of (m, H) has Gal(F/K) ∼= Im/H ∼= C4

and is ramified only at (7) by Thm. 63. What is F? By Kummer theory we have
F = K( 4

√
α) for some α ∈ K. Scaling by xn, we can assume that α ∈ OK and

(α) =
∏

pnii with 1 ≤ ni ≤ 3. As (α) is a fourth power in F , each pi ramifies, so only
pi = (7) is allowed, i. e. α = ia7b with 0 ≤ a, b ≤ 3. We further know that b = 0, 2 can-
not occur as otherwise K(

√
α)/K is unramifies at (7) as well. This is a contradicition

to the previous example. (Note that X2−α has distinct factors modulo 7, so the inertia
group is trivial.) Hence we have w. l. o. g. b = 1 (replace α by 1

α
7b), so F = K( 4

√
α)

with α = ia7. We now can either work out the ramification to find that F = K( 7
√
−7)

(since the other ramify at (1 + i)), or just compute Frobp, e. g. if p = (x) with x ∈ H
then Frobp = id. Take x = 7 + 2i (this is a prime above 53 = (7 + 2i)(7 − 2i)). If
p = (x) then Frobp = id as p ∈ H, so

4
√
α = Frobp(

4
√
α) ≡ 4

√
α

53 ≡ α13 4
√
α ≡ (ia7)13 4

√
α mod p

≡ ia(−2i)13 4
√
α ≡ ia−i213 4

√
α ≡ ia−130 4

√
α ≡ −ia 4

√
α mod p.

(Note that 213 ≡ 30 mod 53.) Hence a = 2, and so F = K( 4
√
α). Therefore all p = (x)

with x ≡ ±1,±2,±3,±i,±2i,±3i mod 7 split completely in K( 4
√
α)/K.

4.5. Ray Class Fields

Definition Let m be a modulus of K. Its ray class group is Im/P 1
m. Its ray class field25.11.

Km is the class field of (m, P 1
m).

Remark When m = (1) the ray class group is C`K . The corresponding field K(1) is
called the Hilbert class field .
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Example Let K = Q and m = N · ∞. Then Km = Q(ζN).

Lemma 66 Let K be a number field and m be a modulus.

(i) Gal(Km/K) ∼= Im/P
1
m.

(ii) The class field F of (m, H) lies inside Km and Gal(Km/K) ∼= H,1 i. e. F = KH
m .

(iii) If m | m′ then Km ⊆ Km′.

Proof. (i) Follows from Thm. 63 (iv).

(ii) KH
m is a class field for (m, H). (Note Frobp(K

H
m /K) = id iff p ∈ H by Rmk. 58.)

Hence it is the class field of (m, H) by uniqueness (Thm. 63 (ii)).

(iii) Km is the class field for (m′, Im′ ∩H) where H is the kernel of the Artin map

ϕ : Im −→ Gal(KH
m /K).

(Note that H ⊇ P 1
m ⊇ P 1

m′ .) Hence Km ⊆ Km′ by (ii).

Lemma 67 Let K be a number field and F = K(1) be its Hilbert class field.

(i) C`K ∼= Gal(F/K) (via Artin map
∏

p→∏
Frobp).

(ii) A prime p of K is principal iff p splits completely in F/K.

(iii) The order of p in C`K is equal to the order of Frobp in Gal(F/K) and fp, the
residue degree of p in F/K.

(iv) F/K is unramified at all primes and all embeddings K ↪→ R extend to F ↪→ R.
If L/K is another abelian extension with this property, then L ⊆ F .

Proof. (i) Follows from Thm. 63 (iv).

(ii) A prime p is principal iff p ∈ P 1
m with m = (1) iff Frobp = id.

(iii) Follows by (i).

(iv) F/K satisfies this property because its conductor is (1) (by Thm. 63 (iii)). Also
L has conductor (1) (by Thm. 63 (i) and (iii)), so is a class field for ((1), H), so
lies in F (by Lemma 66 (ii)).

Example Let K = Q
(√
−5
)
, so OK = Z

[√
−5
]
and C`K = C2. Its Hilbert class

field is F = K(i) since only 2 and 5 ramify in F/Q and the primes above these in
K are unramified in F/K. Moreover K has no real embeddings. Hence F ⊆ K(1) by
Lemma 67 (iv), and so F = K(1) as Gal(F/K) ∼= C`K by Lemma 67 (i). Explicitly:
Let p - 2 be a prime of K. If p = (a + b

√
−5) then N(p) = a2 + 5b2 ≡ 1 mod 4

since N(p) must be odd. So Frobp(i) ≡ iN(p) ≡ i mod p, and hence Frobp = id since
i 6≡ −i mod p as p - 2. If p is non-principal then p(3, 1 +

√
−5) is, so N(p) · 3 =

a2 + 5b2 ≡ 1 mod 4 (again N(p) must be odd). This implies N(p) ≡ 3 mod 4, and
hence Frobp(i) ≡ iN(p) ≡ −i mod p, i. e. Frobp 6= id as i 6≡ −i mod p. Thus p has

1Note the abuse of notation H for H/P 1
m.
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residue degree 2 in F/K. Finally p | 2 is non-principal (explicitly p = (2, 1 +
√
−5)),

and does not split in F/K.

Proposition 68 Let K/k be a Galois extension of number fields and m a modulus of
K with m = gm for all g ∈ Gal(K/k). Then:

(i) Km is Galois over k.

(ii) If n | m then Kgn = g̃Kn for any g̃ ∈ Gal(Km/k) that projects to g ∈ Gal(K/k).

(iii) ϕ(ga) = g̃ϕ(a)g̃−1, where ϕ : Im → Gal(Km/K) is the Artin map and g, g̃ as in
(ii).

Proof. Let F/k be the Galois closure of Km/k, and q a prime of F above p. Observe
that

σ Frobq/p σ
−1 = Frobσ(q)/σ(p) (4.1)

for σ ∈ Gal(F/k).

(i) p splits completely in σKm iff σ−1p splits completely in Km iff p splits completely
in Km as the definition of Km is Gal(F/k)-invariant. Thus σKm is also a class
field for m and so σKm = Km by uniqueness. Hence Km/k is Galois.

(ii) p splits completely in σKn iff Frobq/p ∈ Gal(F/Kn) iff σ Frobq/p σ
−1 ∈

Gal(F/σKn) iff Frobσ(q)/σ(p) ∈ Gal(F/σKn) iff σ(p) splits completely in σKn.
Hence σKn is a class field for σn and so σKn = Kσn.

(iii) Follows by (4.1).

Remark For the Hilbert class field we have: p is principal iff p splits completely. For
p non-principal Hilbert conjectured that pOF is principal, which turned out to be true.

4.6. Properties of the Artin Map*

Definition Let F/K be a Galois extension and Kab the maximal abelian extension of27.11.

K in F , so if Gal(F/K) = G then Gal(F/Kab) = G′ and Gal(Kab/K) = G/G′, where
G′ = 〈aba−1b−1 : a, b ∈ G〉 is the commutator subgroup. The Artin mapArtin map is
defined by

ϕF/K : Im −→ Gal(Kab/K) = G/G′, p 7−→ FrobpG
′.

Remark If L/K finite, then

H = Gal(FL/L) ≤ Gal(F/K) = G.

(Any automorphism of FL/K restricts to an automorphism of F/K; if it acts trivially
on F and on L, then it acts trivially on FL.) There’s a natural map

H/H ′ −→ G/G′, hH ′ −→ hG′

induced by this inclusion.
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Definition Let F/K be a Galois extension of number fields and G = Gal(F/K). The
relative norm of an ideal aCOF is an ideal NF/K(a) COK with

NF/K(a)OF =
∏

g∈G

g(a).

Remark (i) NF/K((α)) = (NF/K(α)).

(ii) If q lies above p, then ∏

g∈G

g(q) = (q1 · · · qk)ef ,

where qi are the primes are the primes above p. So NF/K(q) = pfq , where fq is
the residue degree.

Lemma 69 (*) Let F and L be Galois extensions of K, with FL/L abelian, and m a
suitable modulus (i. e. the conorm of the conductor of Kab/K). Then

ϕF/K(NL/K(a)) = ϕFL/L(a) ·G′,

for (a,m) = 1. Equivalently, the following commutes:

Im
ϕF/K //

NL/K
��

H

��
IN(m) ϕFL/K

// G/G′

Proof. It is enough to check the statement on primes as NL/K is multiplicative. Let q
be a prime of L above p (where p is unramified in F/K). Then:

ϕF/K(NL/K(q)) = ϕ(pfp) = Frob
fp
p (F/K) = Frobq(FL/L) = ϕ(q).

Corollary 70 (*) Suppose F/K is abelian. If p = NF/K(q), then Frobp = id, for p
unramified in F/K.

Proof.
Frobp = ϕF/K(p) = ϕF/F (q) = id .

Definition Let H ≤ G be finite groups. The transfer map (or Verlagerung) Ver :
G/G′ → H/H ′ is defined as follows: Let Hr1 , . . . , Hrk be the right cosets of H in G. If
g ∈ G, let Hrig = Hrσ(i) . Then

Ver(g) =
∏

i

rigr
−1
σ(i) ·H ′.

Fact : Ver is a well-defined homomorphism.

Remark We have

Ver(g) = r1gr
−1
σ(1)

(
rσ(1)gr

−1
σ2(1)

)(
rσ2(1)gr

−1
σ3(1)

)
· · · =

∏

s∈Σ

sgf(s)s−1,
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where Hs 〈g〉 are the H\G/ 〈g〉 double cosets, equivalently the 〈g〉-orbits on the Hri ,
and f(s) = |Hs 〈g〉 |/|H| is the length of the orbit of Hs.

Lemma 71 (*) Let F/K be a Galois extension of number fields, L/K finite and m
the conductor of the maximal abelian extension of K in F . Then

ϕFL/L(aOL) = VerϕF/K(a)

for (a,m) = 1, i. e. the following commutes:

Im
ϕF/K //

conorm
��

G/G′

Ver
��

ImOL ϕFL/L
// H/H ′

Proof. It is enough to check this on the primes p of K. With notation as in the remark
above and g = Frobp, we have

VerϕF/K(p) = Ver Frobp =
∏

s∈Σ

sFrobf(s)
p s−1 C30, P31

=
∏

q|p

Frobq

=
∏

q|p

ϕFL/L(q) = ϕFL/L(pOL),

as p is unramified.

Theorem 72 (Furtwängler*) Let G be a finite group and H = G′. The transfer map
Ver from G to H is trivial, i. e. Ver(q) = id.

Proof. Hard!

Corollary 73 (Principal Ideal Theorem*) All ideals in a number field K become prin-
cipal in its Hilbert class field, i. e. aOK(1)

= (α) for some α ∈ OK(1)
.

Proof. Let F = K(1). By Prop. 68, F(1) is Galois over K. Let G = Gal(F(1)/K) and
H = Gal(F(1)/F ). Note that all subfields L of F(1) are unramified at all primes of K,
and all K ↪→ R extend to L ↪→ R. As F = K(1) is the maximal abelian such field we
have H = G′. If p is a prime of K, we have

ϕF(1)/F (pOF )
L71
= VerG→H(Frobp)

T72
= id .

Thus pOF is principal by Lemma 67 (ii). So all ideals become principal in OF .

Algebraic Number Theory



A. Appendix: Local Fields*

A.1. Definitions

Definition A place in a number fieldK is an equivalence class of (non-trivial) absolute 30.11.

values on K.

Remark These places come in two flavours:

• The infinite places (corresponding to the archimedian absolute values) come from
embeddings K ↪→ R or K ↪→ C and taking

|x|v =

{
|x|, for real embeddings,
|x|2, for complex embeddings.

Note: Complex conjugate embeddings give the same |x|v. Fact : Each archime-
dian absolute value arises in this way, whereas the rest does not, thus the number
of infinite places is r1 + r2.

• The finite places (corresponding to the non-archimedian absolute values) corre-
spond to the primes in K: If p is a prime, set |x|p = N(p)− ordp(x), where ordp(x)
for x ∈ OK is the power of p in the factorisation of (x) and extended multi-
plicatively to K. Fact : These are inequivalent (for different p) and there are no
others.

Remark Completions : The absolute value | · |v makes K into a metric space. Its
completion Kv is a complete local field. If v is archimedian then Kv is R or C. (These
are the “boring” extensions.) Henceforth assume v is a finite place. If K = Q and v
corresonds to p, then Kv = Qp. If K is general, v corresonds to q, where q lies above
p. Then | · |v on Q is equivalent to | · |p. Thus Kv is a finite extension of Qp.

A.2. Residue Fields and Ramification

Remark (i) Let K be a number field and v an absolute value corresponding to q.
Then OKv ⊆ Kv are the elements with |x|v ≤ 1, the units O×Kv

are the elements
with |x|v = 1, the (unique) maximal ideal mv of OKv are the elements with
|x|v < 1, and the associate residue field is kv = OKv/mv.

(ii) Observe that OK ⊆ OKv and q ⊆ mv. So the mapping

OK/q −→ OKv/mv
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is both injective (clear as it is a field homomorphism) and surjective (every ele-
ment of Kv can be approximated by an element of K). Hence OK/q = kv, so the
residue field does not change by completing.

(iii) If L/K is a finite extension and r is a prime of L above q, then Lw/Kv is finite,
fr/q = fw / v (by above), and er/q = ew / v (by comparing valuations).

A.3. Galois Groups

Lemma Let F/K be a Galois extension of number fields and q a prime of F above p
with corresponding absolute values w and v, respectively. If g ∈ Dq/p then it preserves
| · |w on F , so it is a topological isomorphism and thus it extends to an automorphism
of Fw. Hence we obtain a mapping

Dq/p −→ Gal(Fw/Kv).

Proposition This is an isomorphism.

Proof. It is clear that the mapping is injective. For surjectivity we have

|Dq/p| = eq/p · fq/p = ew / v · fw / v = [Fw : Kv] = |Gal(Fw / v)|.

Observe also that we have Iq/p
∼→ Iw / v (being the element that acts trivially on respec-

tive residue fields).

A.4. Applications

Proposition (cf. Prop. 22) If f ∈ OK [X] is Eisenstein with respect to p and α is a
root, then K(α)/K has degree deg f and is totally ramified at p.

Proof. Follows from the corresponding result on the completions.

Proposition Decomposition groups are soluble.

Proof. Galois groups of finite extensions of Qp are I C G with G/I cyclic and I1 C I
with I/I1 cyclic, where I1 is a p-group.

Example There are no C4-extensions of Q whose quadratic subfield is Q(ζ3).

Proof. The extension Q(ζ3)/Q is ramified at 3, so the inertia at 3 must be all of C4. It
is complete at 3 since if you get Fw/Q3 totally ramified and cyclic of degree 4, this is
a tame extension of Q3, so

Gal(Fw/Q3) ↪→ F×3 ,
which is a contradiction.

As an outlook, there is local class field theory, local reciprocity, and much more.
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Section A

1 Give the definition of a Dedekind domain. Let o be a Dedekind domain with field
of fractions k. Let a be a non-zero fractional ideal in k and define a−1 = {x ∈ k |xa ⊂ o }.
Show that a−1 is a fractional ideal and that aa−1 = o.

2 (i) State and prove the Chinese remainder theorem for o a Dedekind domain.

(ii) Let K/k be a normal extension of algebraic number fields. Let p be a prime of k,
whose factorisation in K is conormK/k p = Pe1

1 . . .P
eg
g . Show that Gal(K/k) acts

transitively on the Pi.

3 Let K/k be a finite extension of algebraic number fields. Define the relative ideal
norm and prove that it is multiplicative. Let p be a prime of k, whose factorisation in K
is conormK/k p = Pe1

1 . . .P
eg
g . Show that [K : k] =

∑
eifi where fi is the degree of O/Pi

over o/p.

[Properties of the norm for elements may be assumed.]

Section B

4 Let K/k be an extension of algebraic number fields. Let p be a prime of k and P
a prime of K above p.

(i) Let f(X) be a monic polynomial in op[X] and suppose that the reduction

mod p factors as f̃(X) = φ1(X)φ2(X) where φ1, φ2 in (o/p)[X] are coprime. Show that
f(X) = f1(X)f2(X) with f̃ν(X) = φν(X).

(ii) Suppose Pe || p and p | e. Show that if α ∈ OP then TrKP/kp
(α) ∈ pp.

5 Let K/k be an extension of algebraic number fields. Define the relative different
dK/k. In the case k = Q describe the relationship with the discriminant dK .

(i) For K ⊃ L ⊃ k show that dK/k = dK/LdL/k.

(ii) State a relationship between the different and ramification. Hence show that if
K1,K2 are Galois overQ with coprime discriminants, then [K1K2 : Q] = [K1 : Q][K2 : Q].
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Section C

6

Write an essay on the Hilbert class field. Illustrate by computing the Hilbert class
field for either Q(

√
−23) or Q(

√
−30), explaining all necessary working.

[The cubic X3 + aX + b has discriminant −4a3 − 27b2.]

7 Let m = m1m
2
2 with m1, m2 coprime square-free positive integers. Suppose

m1 6≡ ±m2 (mod 9). Show that Q( 3
√
m) has discriminant −27m2

1m
2
2. Find a unit in

Q( 3
√
6) and show that this field has class number h = 1.

8 LetK/k be a quadratic extension of algebraic number fields withK totally complex
and k totally real.

(i) Show that [O∗
K : o∗kµK ] = 1 or 2, where O∗

K , o∗k are the unit groups in K, k,
and µK is the group of roots of unity in K.

(ii) Show that the class number of k divides the class number of K.

[You may assume any properties of the Hilbert class field you require.]
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ζn denotes a primitive nth root of unity. OK denotes the ring of integers of K.

1

(i) State the Kummer-Dedekind theorem.

(ii) Let L = Q(α), where α is a root of the monic irreducible polynomial f(X) ∈ Z[X].
Suppose p is a prime number such that f(X) mod p has no repeated roots in the algebraic
closure of Fp. Prove that the index [OL : Z[α]] is coprime to p.

(iii) Determine which primes ramify in Q( 11
√

44)/Q. Justify your answer.

2

(i) Let F/K be a Galois extension of number fields and p a prime of K. Prove that
the Galois group Gal(F/K) acts transitively on the set of primes of F above p . Explain
briefly how this may be used to determine the number of primes above p in an intermediate
extension K ⊂ L ⊂ F , in terms of the decomposition group of a prime above p in F/K.

(ii) Let F = Q(ζ5,
5
√
λ) for some prime number λ. Let q be a prime of F above a prime

p of Q, whose decomposition group in Gal(F/Q) is cyclic of order 2. Show that there are
three primes above p in Q( 5

√
λ), and two primes above p in Q(ζ5).

3 Define the Dirichlet L-function LN (ψ, s) for a Dirichlet character ψ modulo N , and
state its expression as an Euler product. Prove that if ψ is non-trivial, then LN (ψ, s) is
analytic on Re(s) > 0 and that LN (ψ, 1) 6= 0 .

Prove Dirichlet’s theorem on primes in arithmetic progressions. You may assume
that for a Dirichlet character ψ,

∑

p prime, n≥1

ψ(p)n

n
p−ns

converges absolutely on Re(s) > 1 to an analytic branch of the logarithm of LN (ψ, s).

(Standard results on convergence of Dirichlet series may be used without proof. You may
also assume that the Riemann ζ-function has an analytic continuation to C except for a
simple pole at s = 1 .)

4

Let F = Q(ζ3,
3
√

3) , and let ρ be the two-dimensional irreducible representation
of Gal(F/Q) ' S3 . Compute the first ten coefficients a1, ... , a10 of its Artin L-series
L(ρ, s) =

∑
n an n

−s.

END OF PAPER
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1

State and prove the Kummer–Dedekind theorem. Determine which primes ramify
in Q(ζ80)/Q, where ζn denotes a primitive n-th root of 1.

[You may assume that the ring of integers of Q(ζn) is Z[ζn].]

2

(i) Let F/K be a Galois extension of number fields. Let p be a prime of K with
residue field kp, and q a prime of F above p with residue field kq. Prove that the natural
map from the decomposition group of q to Gal(kq/kp) is surjective.

Now let F = Q(ζ3,
3
√

2), where ζ3 denotes a primitive cube root of 1.

(ii) Prove that no prime of F has absolute residue degree 6.

(ii) The prime 7 decomposes in Q(ζ3) as p1p2, where p1 = (ζ3 +3) and p2 = (ζ2

3
+3).

Determine the Frobenius element of p1 in F/Q(ζ3).

3

Let F = Q(
√
−2,

√
−3), and let ρ be the regular representation of

Gal(F/Q) ≃ C2×C2 , i.e. the direct sum of its four 1-dimensional representations. Com-
pute the first ten coefficients a1, ... , a10 of its Artin L-series L(ρ, s) =

∑
n>1

an n−s.

4

State and prove Chebotarev’s density theorem. Prove that for a monic irreducible
polynomial f(X) with integer coefficients, there are infinitely many primes p such that
f(X) mod p has no roots in Fp .

[You may assume that Artin L-functions have meromorphic continuation to C, analytic

on ℜ(s) > 1, that the Riemann ζ-function ζ(s) has a simple pole at s = 1 , and that L(ρ, s)
is analytic and non-zero at s = 1 for non-trivial irreducible representations ρ.]

END OF PAPER
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