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1 Introduction

1.1 Historical Remarks and Outline

In a letter dated to 7 June 1742, the German mathematician Christian Goldbach
wrote to Leonhard Euler his conjecture that every even integer can be represented
as the sum of two prime numbers. Over two and a half centuries later, this still remains
unproved, but throughout this period, Goldbach’s conjecture has been an inspiring in-
citement to many mathematicians which led to the development of a branch of math-
ematics now famous as additive number theory. The aim of this treatise is to present
proofs of two renowned results in this area: Schnirelmann’s Theorem (a weaker version
of Goldbach’s conjecture), and Waring’s problem stating that every positive integer can
be represented as the sum of a bounded number of kth powers.

Both proofs rely on a certain measurement of sequence of integers, called the Schnirel-
mann density. The notion of this density will be introduced in Chapter 2 whose main
purpose is to prove that any sequence with positive density is a basis of finite order,
i. e. every integer can be represented as a sum of a finite number of elements of this
sequence. As it turns out, the number of different representations of an integer as such
a sum plays a crucial role in these kinds of problem, and therefore the remainder of this
paper will be dedicated to the study of estimates for these numbers of representations.

In Chapter 3, we will prove Chebyshev’s Theorem, a classical result in the distribution of
primes which is required to prove the necessary lower bound for Schnirelmann’s Theorem,
and also an important result in its own right. Chapter 4 will present the Selberg sieve,
a powerful and universally usable tool to estimate numbers of solutions. The deduced
upper bound will conclude the proof of Schnirelmann’s Theorem. Since Brun’s Theorem
on twin primes requires essentially the same estimates we will include a proof in this
section. As a further application of the Schnirelmann density, we will present a solution
to Waring’s problem in Chapter 5. With the aid of this approach, a much shorter and
more elementary proof than David Hilbert’s original one is possible.

1.2 Notations and Definitions

Throughout this elaboration, we will make heavy use of implied constants. Instead of the
O notation, we will utilize the symbols � and � which allow more intuitive estimates.



Chapter 1. Introduction 1.2. Notations and Definitions

Definition Let f and g be positive functions. We write f � g or g � f if there is a
positive constant c such that f(x) ≤ cg(x) for all sufficiently large x. This constant may
depend only on some other constants, but not on x.

Moreover, by N and N0 we mean the set of positive and non-negative integers, respec-
tively. By P we denote the set of prime numbers, by #S the cardinality of the set S, by
log x the natural logarithm, and by bxc the integral part of x. For the sake of brevity,
we will write (m,n) for the greatest common divisor, and [m,n] for the lowest common
multiple of the integers m and n.

Before we proceed to introduce the Schnirelmann density, we want to give an important
estimate that will be handy throughout the paper.

Theorem 1.1 (Cauchy-Schwarz inequality) Let x, y ∈ Rn. Then(
n∑
i=1

xiyi

)2

≤

(
n∑
i=1

x2i

)
·

(
n∑
i=1

y2i

)
,

where equality is attained if and only if x and y are linearly dependent.

Proof. Assume that y 6= 0, otherwise the statement is trivial. The inequality follows at
once from

2

( n∑
i=1

x2i

)(
n∑
i=1

y2i

)
−

(
n∑
i=1

xiyi

)2
 = 2

(
n∑

i,j=1

x2i y
2
j −

n∑
i,j=1

xiyixjyj

)

=
n∑

i,j=1

(
x2i y

2
j − 2xiyixjyj + x2jy

2
i

)
=

n∑
i,j=1

(xiyj − xjyi)2 ≥ 0,

where equality is attained if and only if xi =
xj
yj
yi. Since there is at least one yj 6= 0,

this is equivalent to linear dependence.
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2 Schnirelmann’s Theorem

The aim of this chapter is to prove the first notable result on Goldbach’s conjecture,
found in 1930 by the Russian mathematician Lev Schnirelmann1:

Theorem 2.1 (Schnirelmann) There is a bounded number h such that every integer
greater than 1 can be represented as a sum of at most h primes.

The proof is entirely elementary; yet we will need estimates that require some more
work and will be proved in the following chapters. First, we will introduce a kind of
“measure” now famous as the Schnirelmann density. This depiction follows Nathanson’s
book [Nat96, Ch. 7].

2.1 Schnirelmann Density

Definition Let A ⊆ Z be a set of integers, and x ∈ R a real number. By

A(x) := #{a ∈ A : 1 ≤ a ≤ x}

we denote the number of elements in A not exceeding x. Then we define the Schnirel-
mann density of A by

σ(A) := inf
n∈N

A(n)

n
.

First, we want to give some basic properties of the Schnirelmann density:

Lemma 2.2 Let A ⊆ Z, and x ∈ R.

(i) 0 ≤ σ(A) ≤ 1.

(ii) A(m) ≥ σ(A)m for all m ∈ N.

(iii) Let m ≥ 1. If m /∈ A then

σ(A) ≤ 1− 1

m
< 1.

In particular, if 1 /∈ A then σ(A) = 0.

1Schnirelmann first published his result in Russian [Sch30], later (expanded) in German [Sch33]. A
comprehensible account was given by Edmund Landau [Lan30].



Chapter 2. Schnirelmann’s Theorem 2.1. Schnirelmann Density

(iv) The set A contains all positive integers if and only if σ(A) = 1.

(v) Let ε > 0. If σ(A) = 0, then we can find N > 0 such that A(n) < εn for all
n ≥ N .

Proof. (i) Obviously 0 ≤ A(x) ≤ x, so

0 ≤ A(x)

x
≤ 1,

and hence
0 ≤ inf

n∈N

A(n)

n
= σ(A) ≤ 1.

(ii) By definition, we have for all m ∈ N:

A(m)

m
≥ inf

n∈N

A(n)

n
= σ(A),

thus A(m) ≥ σ(A)m.

(iii) If m /∈ A, then A(m) ≤ m− 1, so

σ(A) = inf
n∈N

A(n)

n
≤ A(m)

m
≤ m− 1

m
= 1− 1

m
< 1.

The case m = 1 is obvious by plugging 1 into the formula.

(iv) If m ∈ A for all m ∈ N then A(m) = m, and so σ(A) = 1. Conversely, if there
exists m ∈ N with m /∈ A, then σ(A) < 1 by (iii).

(v) Assume to the contrary that A(n) ≥ εn for all n ∈ N. Then by definition,

σ(A) = inf
n∈N

A(n)

n
≥ ε > 0,

giving the contradiction.

Before we proceed with the proof of Schnirelmann’s Theorem, we want to acquaint
ourselves with the notion of Schnirelmann density through some fundamental examples.

Example 2.3 (i) Let A denote the even numbers. Since 1 /∈ A, Lemma 2.2 yields
σ(A) = 0.

(ii) Let A denote the odd numbers. Obviously σ(A) ≤ 1
2
since 2 /∈ A, and also

A(2m) = m for all positive integers m. But on the other hand, A(2m+1) = m+1,
so

A(2m+ 1)

2m+ 1
=

m+ 1

2m+ 1
>

1

2
,
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Chapter 2. Schnirelmann’s Theorem 2.1. Schnirelmann Density

and hence
σ(A) = inf

n∈N

A(n)

n
= inf

n∈N

{
n

2n
,
n+ 1

2n+ 1

}
=

1

2
.

It may be surprising that the density of the even and the odd numbers do not coin-
cide, but this fact illustrates the sensitivity of the Schnirelmann density concerning
the first values of the set.

(iii) Let A denote the square numbers, i. e.

A = {a2 : a ∈ N0} = {02, 12, 22, 32, . . .}.

Then obviously A(n2) = n, and so

σ(A) = inf
n∈N

A(n)

n
≤ inf

n∈N

A(n2)

n2
= inf

n∈N

n

n2
= 0.

This can be generalised to any set of kth powers straightforwardly.

(iv) Let A denote the prime numbers, expanded by 1 (otherwise σ(P) = 0 is trivial).
By Chebyshev’s Theorem (Thm. 3.1) we know that

A(x) = π(x) + 1� x

log x

for all x ≥ 2. This again yields

σ(A) = inf
n∈N

A(n)

n
� m/ logm

m
=

1

logm

for all m ∈ N, and hence σ(A) = 0.

(v) We now give a non-trivial example of a sequence with positive density. Let A2

denote the squarefree numbers, i. e. integers such that all their prime divisors are
distinct. It is a straightforward calculation that

lim
x→∞

A2(x)

x
=

1

ζ(2)
=

6

π2
≈ 0.607927 . . .

Kenneth Rogers showed [Rog64] with an elementary argument that

σ(A2) =
53

88
≈ 0.602273 . . . <

6

π2
.

Analogously, we call a number k-free if no kth power of any prime divides this
number. Note that we consider 1 to be k-free, giving it the odd property of being
k-free and a perfect kth power. Certainly, every squarefree number is k-free for
any k ≥ 2, so on denoting the sequence of k-free numbers by Ak we have

53

88
= σ(A2) ≤ σ(A3) ≤ . . . ≤ σ(Ak) ≤ σ(Ak+1).
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Chapter 2. Schnirelmann’s Theorem 2.1. Schnirelmann Density

With the same calculation as above, we can show that

lim
x→∞

Ak(x)

x
=

1

ζ(k)
.

More precisely, R.L. Duncan [Dun65] proved that we have the following chain
of inequalities:

53

88
= σ(A2) <

1

ζ(2)
< . . . < σ(Ak) <

1

ζ(k)
< σ(Ak+1) <

1

ζ(k + 1)
< . . .

Now we want to examine sumsets and bases:

Definition Let A,B ⊆ Z. Then we define their sumset by

A+B := {a+ b : a ∈ A, b ∈ B}.

This can be generalised to h sets A1, . . . , Ah ⊆ Z by

A1 + . . .+ Ah := {a1 + . . .+ ah : ai ∈ Ai}.

If Ai = A for all i, then we write

hA :=
h∑
i=1

A.

We call A a basis of order h if hA contains all positive integers, i. e. if every positive
integer can be represented as the sum of (exactly) h elements of A, and a basis of finite
order if there is an integer h such that every positive integer can be represented as the
sum of at most h elements of A.

In most cases, we will assume that 0 ∈ A, so that every basis of order h is a basis of
order h+ 1 as well, and we do not need to distinguish between representations as sums
of exactly h elements and at most h elements of A.

By Lemma 2.2, being a basis of order h is equivalent to σ(hA) = 1. Schnirelmann made
the important observation that a set with positive density is a basis of finite order. To
prove this, we need some further properties of the Schnirelmann density.

Lemma 2.4 Let A,B ⊆ Z be subsets containing 0.

(i) If n is a non-negative integer and A(n) +B(n) ≥ n, then n is contained in A+B.

(ii) If σ(A) + σ(B) ≥ 1, then n is contained in A+B for all positive integers n.

(iii) If σ(A) ≥ 1
2
then A is a basis of order 2.

Adding Prime Numbers 6



Chapter 2. Schnirelmann’s Theorem 2.1. Schnirelmann Density

Proof. (i) If n ∈ A then n+ 0 ∈ A+ B, and analogue, if n ∈ B then 0 + n ∈ A+ B.
So assume that n /∈ A ∪B. We define the sets

A′ := {n− a : a ∈ A, 1 ≤ a ≤ n− 1},

and

B′ := {b : b ∈ B, 1 ≤ b ≤ n− 1}.

Then #A′ = A(n) and #B′ = B(n) as A(n − 1) = A(n) and B(n − 1) = B(n)
since n /∈ A,B. Moreover

A′ ∪B′ ⊆ {1, 2, . . . , n− 1},

i. e. #(A′ ∪B′) ≤ n− 1. But

#A′ + #B′ = A(n) +B(n) ≥ n

by assumption, so A′ ∩B′ cannot be empty. Hence n− a = b for some a ∈ A and
b ∈ B, so

n = a+ b ∈ A+B.

(ii) By Lemma 2.2 we have

A(n) +B(n) ≥ σ(A)n+ σ(B)n = (σ(A) + σ(B))︸ ︷︷ ︸
≥1

n ≥ n,

so n ∈ A+B by (i).

(iii) Let A = B in (ii), then σ(A) + σ(A) ≥ 1, so n ∈ A + A for all n ∈ N, i. e. A is a
basis of order 2.

It is worth noticing that this result already suffices to describe the additive behaviour
of k-free numbers completely.

Corollary 2.5 The set of k-free numbers amended by 0 is a basis of order 2 for all
k ≥ 2.

Proof. Let Ak denote the set of k-free numbers together with 0. According to Ex. 2.3 (v)
we have

σ(Ak) ≥ σ(A2) =
53

88
>

1

2
.

So by Lemma 2.4, Ak is a basis of order 2.

Usualy, we are not able to apply Lemma 2.4 that conveniently. However, we are now
prepared to prove a powerful inequality concerning the Schnirelmann density.

Adding Prime Numbers 7



Chapter 2. Schnirelmann’s Theorem 2.1. Schnirelmann Density

Proposition 2.6 Let A,B ⊆ Z subsets containing 0. Then we have the inequality

σ(A+B) ≥ σ(A) + σ(B)− σ(A) · σ(B).

Proof. Let n ≥ 1 be an integer, and k = A(n). We numerate and order the elements of
A by

0 = a0 < a1 < a2 < . . . < ak ≤ n.

Since 0 ∈ B we have ai = ai + 0 ∈ A + B for all i = 0, 1, . . . , k. Now let ri :=
B(ai+1 − ai − 1) for i = 0, . . . , k − 1, and numerate the elements of B by

1 ≤ b1 < b2 < . . . < bri ≤ ai+1 − ai − 1.

Note that ri may be zero, in which case the respective statements are simply empty. For
every i, we have by construction

ai < ai + b1 < ai + b2 < . . . < ai + bri < ai+1,

and ai + bj ∈ A+B for all j = 1, 2, . . . , ri. Let rk = B(n− ak), and

1 ≤ b1 < b2 < . . . < brk ≤ n− ak.

Then again we have

ak < ak + b1 < ak + b2 < . . . < ak + brk ≤ n,

and ak + bj ∈ A + B for all j = 1, 2, . . . , rk. All statements combined, we thus have
found the following distinct elements of A+B not exceeding n:

a0 < a0 + b1 < . . . < a0 + br0 < a1 < a1 + b1 < . . . < a1 + br0 < a2 < . . .

< ak < ak + b1 < . . . < ak + brk ≤ n.

This gives us the estimate for all n ∈ N:

(A+B)(n) ≥ A(n) +
k∑
i=0

ri

= A(n) +
k−1∑
i=0

B(ai+1 − ai − 1) +B(n− ak)

L2.2
≥ A(n) +

k−1∑
i=0

σ(B)(ai+1 − ai − 1) + σ(B)(n− ak)

= A(n) + σ(B)
k−1∑
i=0

(ai+1 − ai) + σ(B)(n− ak)− σ(B)k

telescope
= A(n) + σ(B)n− σ(B)k

Adding Prime Numbers 8



Chapter 2. Schnirelmann’s Theorem 2.1. Schnirelmann Density

k = A(n)
= A(n) + σ(B)n− σ(B)A(n)

= (1− σ(B))A(n) + σ(B)n
L2.2
≥ (1− σ(B))σ(A)n+ σ(B)n

= (σ(A) + σ(B)− σ(A)σ(B))n.

Division by n finally yields

σ(A+B) = inf
n∈N

(A+B)(n)

n
≥ σ(A) + σ(B)− σ(A)σ(B).

Note that the inequality is equivalent to

1− σ(A+B) ≤ (1− σ(A))(1− σ(B)).

We can generalise this easily:

Corollary 2.7 Let h ∈ N, and A1, . . . , Ah ⊆ Z subsets containing 0. Then we have the
inequality

1− σ(A1 + . . .+ Ah) ≤
h∏
i=1

(1− σ(Ai)).

Proof. This is a straightforward induction on h. The case h = 1 is obvious, the case
h = 2 is Prop. 2.6. Now let h > 2. Then

1− σ(A1 + . . .+ Ah) = 1− σ((A1 + . . .+ Ah−1) + Ah)
P2.6
≤ (1− σ(A1 + . . .+ Ah−1))(1− σ(Ah))

I. H.
≤

(
h−1∏
i=1

(1− σ(Ai))

)
(1− σ(Ah)),

as desired.

We have now all ingredients to prove the announced link between positive density and
bases of finite order.

Theorem 2.8 If A ⊆ Z is a subset containing 0 with positive Schnirelmann density
then A is a basis of finite order.

Proof. As σ(A) > 0 we have 0 ≤ 1− σ(A) < 1, and so there is an integer l with

0 ≤ (1− σ(A))l ≤ 1

2
.

By Cor. 2.7, this yields

1− σ(lA) ≤ (1− σ(A))l ≤ 1

2
,

Adding Prime Numbers 9



Chapter 2. Schnirelmann’s Theorem 2.1. Schnirelmann Density

and so σ(lA) ≥ 1
2
. By Lemma 2.4, lA is a basis of order 2, i. e. every integer can be

represented as the sum of two elements of lA. Each of these elements can be represented
as a sum of l elements of A, so A is a basis of order 2l <∞.

Unfortunately, we know by Ex. 2.3 (iv) that σ(P) = 0, so we need some more work. The
following general result indicates the strategy we will use.

Proposition 2.9 Let A = (a1, a2, . . .) be a sequence of integers, and r(a) denote the
multiplicity of a in A, i. e.

r(a) :=
∑
i≥1
ai=a

1.

Let x be a real number. If the estimate

1

x
·
(∑

1≤N≤x r(N)
)2∑

1≤N≤x r(N)2
≥ α > 0

holds for all x ≥ 1, then σ(A) ≥ α > 0, i. e. A has positive Schnirelmann density.

Proof. By the Cauchy-Schwarz inequality (Thm. 1.1), we have

(∑
N≤x

r(N)

)2

=

∑
N∈A
N≤x

1 · r(N)


2

≤

∑
N∈A
N≤x

12

 ·
∑

N∈A
N≤x

r(N)2


= A(x) ·

∑
N≤x

r(N)2.

By assumption, this yields

A(x)

x
≥ 1

x
· (
∑
r(N))2∑
r(N)2

≥ α > 0

for all x ≥ 1. Therefore

σ(A) = inf
n∈N

A(n)

n
≥ α > 0.

The next section will deal with the question how to apply these results to Goldbach’s
problem. Some more sophisticated estimates will be needed; their proofs are subject of
the subsequent chapters.

As a concluding remark, it is worth noticing that the inequality in Prop. 2.6 was improved
by Henry B. Mann [Man42]:

Adding Prime Numbers 10



Chapter 2. Schnirelmann’s Theorem 2.2. Proof of Schnirelmann’s Theorem

Theorem 2.10 (Mann) Let A,B ⊆ Z subsets containing 0. Then we have the inequality

σ(A+B) ≥ min{σ(A) + σ(B), 1}.

This bound is sharp: Let both A and B be the set

A := {a ∈ Z : a ≡ 1 mod m} ∪ {0}

for an integer m ≥ 2. Then 2A = A + A obviously consists of 0 and all the integers
congruent to 1 or 2 modulo m. Analogously to Ex. 2.3 (ii), one sees that σ(A) = 1/m,
while σ(2A) = 2/m, so Mann’s result cannot be improved further.

2.2 Proof of Schnirelmann’s Theorem

Throughout this section, let r(N) denote the number of representations of the positive
integer N as the sum of two primes, i. e.

r(N) :=
∑

p1+p2=N

1.

Then Goldbach’s original problem can be rephrased as

r(2N) > 0

for all N ∈ N, so obviously it is worth studying r(N) in order to solve Goldbach’s
problem.

A famous result in the distribution of primes is Chebyshev’s Theorem (Thm. 3.1): If
π(x) denotes the number of primes not exceeding x (cf. Chapter 3), then we have for all
x ≥ 2:

x

log x
� π(x)� x

log x
.

From this, we immediately obtain a lower bound for
∑
r(N):

Lemma 2.11 Let N be a positive integer and x ≥ 2 a real number. Then:∑
N≤x

r(N)� x2

(log x)2
,

where the implied constant is absolute.

Proof. Let p and q be primes not exceeding x/2. Obviously, p + q ≤ x is an integer
represented as the sum of two primes with value at most x, so is included in the set the
sum is counting. We can choose π(x/2) primes for p and q, respectively, so we obtain∑

N≤x

r(N) ≥ (π(x/2))2 �
(

x/2

log x/2

)2

� x2

(log x)2

by Chebyshev’s Theorem (Thm. 3.1).

Adding Prime Numbers 11



Chapter 2. Schnirelmann’s Theorem 2.2. Proof of Schnirelmann’s Theorem

Therefore, Chapter 3 will be dedicated to the proof of Chebyshev’s Theorem. Regarding
Prop. 2.9, we see that the following estimate is needed to proof Schnirelmann’s Theorem:

Lemma 2.12 Let N be a positive integer and x ≥ 2 a real number. Then:∑
N≤x

r(N)2 � x3

(log x)4
,

where the implied constant is absolute.

In his original paper, Schnirelmann used sieve methods by Viggo Brun; however, in
Chapter 4 we will present sieve methods according to Atle Selberg that generally
yield stronger estimates, and allow a more concise way to prove the required upper
bound in Lemma 2.12.

Assuming these results, we can now prove Schnirelmann’s Theorem. We saw that σ(P) =
0 (Ex. 2.3 (iv)), but courtesy of these estimates, we are able to prove that 2P (extended
by 0 and 1) has positive density.

Proposition 2.13 The set (P + P) ∪ {0, 1} has positive Schnirelmann density.

Proof. Let A := (P + P), and A′ := A ∪ {0, 1}. By definition, r(a) is counting the
multiplicity of an integer a in A. By Lemma 2.11 we have for a positive integer N , and
for a real number x ≥ 2 the estimate∑

N≤x

r(N)� x2

(log x)2
,

and by Lemma 2.12, ∑
N≤x

r(N)2 � x3

(log x)4
.

Combining these, we have

1

x
· (
∑
r(N))2∑
r(N)2

� 1

x
· x

4/(log x)4

x3/(log x)4
= 1,

meaning that there exist α > 0 such that

1

x
· (
∑
r(N))2∑
r(N)2

≥ α > 0.

Since 1 ∈ A′, we obtain
1

x
· (
∑
r′(N))2∑
r′(N)2

≥ α′ > 0

for all x ≥ 1, where r′(N) denotes the multiplicity of N in A′. Using Prop. 2.9, we
obtain:

σ(A′) ≥ α′ > 0.

Adding Prime Numbers 12



Chapter 2. Schnirelmann’s Theorem 2.3. Generalisations

Compiling everything, we can complete the proof of Schnirelmann’s Theorem.

Proof of Theorem 2.1. We want to prove that every integer greater than 1 can be rep-
resented by the sum of a bounded number of primes. By Prop. 2.13, we know that
A := (P + P) ∪ {0, 1} has positive density, hence by Thm. 2.8 is a basis of finite order,
say h. Let N ≥ 2. Then the non-negative integer N − 2 can be represented by the
sum of exactly h elements of A, say l zeros, k ones, and m pairs of primes pi + qi for
i = 1, . . . ,m, i. e.

N − 2 = 1 + . . .+ 1︸ ︷︷ ︸
k times

+(p1 + q1) + . . .+ (pm + qm),

where h = l + k +m. If k = 2r is even then we can write

N = 2 + . . .+ 2︸ ︷︷ ︸
r + 1 times

+p1 + q1 + . . .+ pm + qm;

if k = 2r + 1 is odd then we have

N = 2 + . . .+ 2︸ ︷︷ ︸
r times

+3 + p1 + q1 + . . .+ pm + qm.

In each case, we can represent N as the sum of at most

r + 1 +m ≤ 2k +m ≤ 3h

primes, as required.

Of course, it is quite unsatisfactory that the order of the basis depends heavily on the
implied constants in the estimates. The least number h of primes needed to represent any
integer as a sum is called Schnirelmann’s constant. Schnirelmann’s original proof only
yields that this constant is finite; the best known value to date is 7, proved by Olivier
Ramaré [Ram95] in 1995. A proof of Goldbach’s conjecture would immediately imply
that Schnirelmann’s constant is 3, but this seems not to be within sight.

2.3 Generalisations

In his original paper, Schnirelmann proved a slightly stronger result. We say that a set
P ⊆ P contains a positive proportion of the primes, if there is ϑ > 0 such that

P (x) ≥ ϑπ(x)

for all sufficiently large real numbers x. Schnirelmann proved that such sets also allow
representations as finite sums for all sufficiently large integers. The following simple
proof is due to Melvyn B. Nathanson [Nat87].

Adding Prime Numbers 13
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Theorem 2.14 Let P ⊆ P be a set that contains a positive proportion of the primes.
Then every sufficiently large integer can be represented by a bounded number of elements
of P .

Proof. Let rP (N) denote the number of representations of N as the sum of two elements
of P . Obviously, rP (N) ≤ r(N), and so∑

N≤x

rP (N)2 ≤
∑
N≤x

r(N)2 � x3

(log x)4

by Lemma 2.12. Moreover, we have∑
N≤x

rP (N) ≥ P (x/2)2 ≥ (ϑπ(x/2))2 � x2

(log x)2

by the same argument as in Lemma 2.11. So (P + P ) ∪ {0, 1} has positive density and
is hence a basis of finite order, i. e. there is a number h1 such that every positive integer
can be represented as the sum of at most h1 elements of P ∪ {1}. Now pick two primes
p, q ∈ P . From the Euclidean algorithm we obtain the linear combination xp − yq = 1
with x, y ≥ 1, so there is an integer n0 such that every integer n ≥ n0 can be represented
as a linear combination

n = a(n)p+ b(n)q

with non-negative coefficients a(n) and b(n). So let n ≥ n0. We have the representation
as the sum of elements of P ∪ {1}

n− n0 = p1 + . . .+ pr + 1 + . . .+ 1︸ ︷︷ ︸
s times

,

where r + s ≤ h1, so n0 ≤ n0 + s ≤ n0 + h1. Let

h2 := max {a(m) + b(m) : n0 ≤ m ≤ n0 + h1} .

Then we obtain

n = p1 + . . .+ pr + s+ n0

= p1 + . . .+ pr + a(s+ n0)p+ b(s+ n0)q

= p1 + . . .+ pr + p+ . . .+ p︸ ︷︷ ︸
a(s+ n0) times

+ q + . . .+ q︸ ︷︷ ︸
b(s+ n0) times

,

a representation with at most h := h1 + h2 elements of P .

An important special case of a set containing a positive proportion of the primes are
primes in arithmetic progression:

Adding Prime Numbers 14



Chapter 2. Schnirelmann’s Theorem 2.3. Generalisations

Corollary 2.15 Let a and m be relatively prime integers with m ≥ 2. Then every
sufficiently large integer is the sum of a bounded number of primes in the residue class
a modulo m.

Proof. Let P := {p ∈ P : p ≡ a mod m}. According to Dirichlet’s Theorem on primes
in arithmetic progressions, we have

lim
x→∞

P (x)

π(x)/ϕ(m)
= 1,

where ϕ(m) is Euler’s totient function, and so Thm. 2.14 applies.

Adding Prime Numbers 15



3 Chebyshev’s Theorem

In this chapter, we want to prove Chebyshev’s Theorem which was an important step
towards proving the Prime Number Theorem1, but unlike this central result of analytic
number theory it can be proved in a short and elementary way. The first proof was
published in 1851 by Pafnuty Chebyshev [Che51]. However, the proof has been
simplified remarkably since by Paul Erdős and others; we will follow the argument as
expounded in Hua’s [Hua82, Ch. 5] and Nathanson’s [Nat96, Ch. 6] books.

Throughout this chapter, p shall denote a prime number; all sums and products con-
taining p shall run over all primes p as indicated. First, we need to define the decisive
functions.

Definition Let x ≥ 0 be a real number. The prime counting function π(x) is defined
by

π(x) := #{p ∈ P : p ≤ x} =
∑
p≤x

1.

Sometimes, it is more convenient to use the weighted sum

ϑ(x) :=
∑
p≤x

log p,

which is known as the Chebyshev function.

The Prime Number Theorem states that π(x) ∼ x/ log x, i. e.

lim
x→∞

π(x)

x/ log x
= 1,

but for our purpose, it is sufficient to prove the following:

Theorem 3.1 (Chebyshev) Let x ≥ 2. Then:
x

log x
� π(x)� x

log x
,

where the implied constants are absolute.

First, we want to gather several lemmas in the next section in order to prepare the proof
of the main theorem.

1This was first proved independently by Jacques Hadamard [Had96] and Charles de la Vallée-
Poussin [dlVP96] in 1896 making heavy use of complex analysis. Elementary, but still very long
and hard proofs were found by Atle Selberg [Sel49] and Paul Erdős [Erd49] in 1949.



Chapter 3. Chebyshev’s Theorem 3.1. Preliminary Notes

3.1 Preliminary Notes

Lemma 3.2 Let n ≥ 1 be an integer.

(i) We have an estimate for the central binomial coefficient:(
2n

n

)
< 22n ≤ 2n

(
2n

n

)
.

(ii) Moreover, we have (
2n+ 1

n

)
< 22n.

Proof. (i) As
(
2n
n

)
is the central binomial coefficient, it is at least

(
2n
k

)
for k = 0, . . . , 2n.

With this, we have (
2n

n

)
<

2n∑
k=0

(
2n

k

)
= 22n

= 1 +
2n−1∑
k=1

(
2n

k

)
+ 1

≤ 2 + (2n− 1)

(
2n

n

)
≤ 2n

(
2n

n

)
.

(ii) This can be proved in a similar fashion. First note by the symmetry of the binomial
coefficient that (

2n+ 1

n

)
=

(
2n+ 1

n+ 1

)
.

Hence by the same argument as above

2 ·
(

2n+ 1

n

)
=

(
2n+ 1

n

)
+

(
2n+ 1

n+ 1

)
<

2n+1∑
k=0

(
2n+ 1

k

)
= 22n+1.

Lemma 3.3 (Erdős) Let x ≥ 2 be a real number. By

P(x) :=
∏
p≤x

p

we denote the so-called primorial of x. Then we have the estimate

P(x) ≤ 4x.
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Chapter 3. Chebyshev’s Theorem 3.1. Preliminary Notes

Proof. Let x ≥ 2 be a real number and n := bxc ≤ x the integral part. Then obviously∏
p≤x

p =
∏
p≤n

p and 4n ≤ 4x,

so it suffices to prove the statement for integers. We proceed by induction on n. The
case n = 2 is obvious. If n is even, then it is not prime, so the primorial does not change,
i. e. ∏

p≤n

p =
∏

p≤n−1

p ≤ 4n−1 < 4n

by the induction hypothesis. Assume now that n = 2m+ 1 is odd. We split the product
into two parts ∏

p≤n

p =

( ∏
p≤m+1

p

)
·

( ∏
m+1<p≤2m+1

p

)
and examine them individually. For the first factor, we obtain∏

p≤m+1

p ≤ 4m+1 (3.1)

by the induction hypothesis. For the second factor, we notice that in the binomial
coefficient (

2m+ 1

m

)
=

(2m+ 1) · (2m) · (2m− 1) · · · (m+ 2)

m · (m− 1) · (m− 2) · · · 2 · 1
every prime m+ 2 ≤ p ≤ 2m+ 1 divides the numerator, but not the denominator. Thus
the binomial coefficient is divisible by the product of all these primes, and hence∏

m+1<p≤2m+1

p ≤
(

2m+ 1

m

)
L3.2
< 22m = 4m. (3.2)

Combining (3.1) and (3.2), we finally obtain

∏
p≤n

p =
∏

p≤2m+1

p =

( ∏
p≤m+1

p

)
·

( ∏
m+1<p≤2m+1

p

)
≤ 4m+1 · 4m = 42m+1 = 4n.

For our proof we need a formula for the order of a prime p in n! due to Adrien-Marie
Legendre.

Definition Let n be a positive integer. By vp(n) we denote the highest power of the
prime p dividing n, i. e.

vp(n) := max{k ≥ 0 : pk | n}.
This allows a short representation of n in the canonical prime factorization:

n =
∏
p≤n

pvp(n).
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Chapter 3. Chebyshev’s Theorem 3.1. Preliminary Notes

Lemma 3.4 (Legendre) Let n be a positive integer. Then:

vp(n!) =
∞∑
k=1

⌊
n

pk

⌋
=

blogn/ log pc∑
k=1

⌊
n

pk

⌋
.

Proof. Obviously, vp is additive, i. e.

vp(m1m2) = vp(m1) + vp(m2)

for all integers m1 and m2. By counting the number of factors we obtain:

vp(n!) = vp

( ∏
1≤m≤n

m

)
=
∑

1≤m≤n

vp(m) =
∑

1≤m≤n

∑
k≥1

pk|m

1 =
∑
k≥1

∑
1≤m≤n

pk|m

1 =
∞∑
k=1

⌊
n

pk

⌋
.

As upper limit for the sum, blog n/ log pc can be chosen since n
pk
≥ 1 if and only if

log n ≥ k log p, which is equivalent to k ≤ logn
log p

.

Now, we want to establish an important connection between π(x) and ϑ(x).

Lemma 3.5 Let x ≥ 2 be a real number and 0 < ε < 1. Then we have the estimate

π(x) ≤ 1

1− ε
ϑ(x)

log x
+ x1−ε.

Proof. By reducing the range of the sum we obtain

ϑ(x) =
∑
p≤x

log p

≥
∑

x1−ε<p≤x

log p

≥
∑

x1−ε<p≤x

log x1−ε

= (1− ε) log x
∑

x1−ε<p≤x

1

= (1− ε) log x(π(x)− π(x1−ε))

≥ (1− ε)π(x) log x− (1− ε)x1−ε log x,

which yields the inequality by rearrangement.
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3.2 Proof of Chebyshev’s Theorem

We are now prepared to prove Chebyshev’s Theorem.

Proof of Thm. 3.1. From Lemma 3.3, we attain an upper bound for ϑ(x):

ϑ(x) =
∑
p≤x

log p = log
∏
p≤x

p
L3.3
≤ log 4x = x log 4. (3.3)

We want to use this to obtain an upper bound for π(x). For this, we first notice by
simple extreme value consideration that log x ≤ x1/2 for all x ≥ 2, which is equivalent
to √

x ≤ x

log x
. (3.4)

We combine these by Lemma 3.5 to achieve our upper bound for π(x). So let 0 < ε < 1
and x ≥ 2. Then:

π(x)
L3.5
≤ 1

1− ε
ϑ(x)

log x
+ x1−ε

(3.3)
≤ log 4

1− ε
x

log x
+ x1−ε

ε = 1/2
= 2 log 4

x

log x
+
√
x

(3.4)
≤ 2 log 4

x

log x
+

x

log x

= (2 log 4 + 1)
x

log x
� x

log x
.

For the lower bound, we first observe(
2n

n

)
=

(2n)!

(n!)2
=
∏
p≤2n

pvp((2n)!)−2vp(n!).

for an arbitrary integer n ≥ 1. By Lemma 3.4, we have

vp((2n)!)− 2vp(n!) =

blog 2n/ log pc∑
k=1

⌊
2n

pk

⌋
− 2

blogn/ log pc∑
k=1

⌊
n

pk

⌋

=

blog 2n/ log pc∑
k=1

⌊
2
n

pk

⌋
− 2

⌊
n

pk

⌋
.

Obviously, b2αc − 2 bαc can only be 0 or 1 for all α ≥ 0, so we have

vp((2n)!)− 2vp(n!) ≤
⌊

log 2n

log p

⌋
≤ log 2n

log p
, (3.5)
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Chapter 3. Chebyshev’s Theorem 3.2. Proof of Chebyshev’s Theorem

and hence

22n

2n

L3.2
≤
(

2n

n

)
(3.5)
≤

∏
p≤2n

plog 2n/ log p =
∏
p≤2n

2n = (2n)π(2n).

This is equivalent to
π(2n) log 2n ≥ 2n log 2− log 2n. (3.6)

Remember that n ≥ 1 was an arbitrary integer, and x ≥ 2, so let n = bx/2c. Then
2n ≤ x < 2n+ 2, and so

π(x) log x ≥ π(2n) log 2n

(3.6)
≥ 2n log 2− log 2n

≥ (x− 2) log 2− log x

= x log 2− log x− 2 log 2.

This implies
π(x)

x/ log x
≥ log 2− log x+ 2 log 2

x
> 0

for x > 4. Simple computations show that π(x)
x/ log x

> 0 for 2 ≤ x ≤ 4, so

π(x)� x

log x

for all x ≥ 2.
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4 The Selberg Sieve

The aim of this chapter is to present the Selberg sieve which was introduced in 1947
by Atle Selberg in a very concise paper [Sel89]. The argument uses only elementary
methods, and yet yields powerful estimates. The main statement of this chapter is
therefore:

Theorem 4.1 (Selberg) Let B ⊂ Z be a finite set of integers, and k a positive integer
with ∑

b∈B
k|b

1 = g(k) ·#B +R(k),

where g(k) is a multiplicative function1 with 0 < g(p) < 1 for all primes p, and R(k)
a certain remainder term. Let NB(z) denote the number of elements of B that are not
divisible by any prime p ≤ z, i. e.

NB(z) :=
∑
b∈B

p|b⇒p>z

1 =
∑
b∈B

(b,P(z))=1

1.

Let g1(k) be a completely multiplicative function with g1(p) = g(p) for all primes p. Then
we have the estimate

NB(z) ≤ #B∑
1≤k≤z g1(k)

+
∑

1≤k1,k2≤z

|R([k1, k2])| ·
∏
p|k1

(1− g1(p))−1 ·
∏
p|k2

(1− g1(p))−1.

This estimate is a very general statement and can be applied in a variety of situations.
We will employ it to obtain an upper bound for r(N), the number of representations of
N as the sum of two primes. Before doing so, we need to compile some auxiliary results.
Our account follows Hua’s book [Hua82, Ch. 19].

4.1 Preliminary Notes

We start by giving some remarks on multiplicative functions.

1Note that by a multiplicative function f we mean the property that f(mn) = f(m)f(n) for relatively
prime m and n. If this holds for all integers, we call f completely multiplicative.
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Definition Let n =
∏
pvp(n) be a positive integer. We say that n is squarefree if n

contains no multiple prime factors, i. e. if vp(n) ≤ 1 for all primes p. With this notion,
we define the Möbius function µ(n) by

µ(n) :=


1, if n = 1,
0, if n is not squarefree,
(−1)ω(n), otherwise,

where ω(n) denotes the number of distinct prime divisors of n.

Lemma 4.2 Let f be a multiplicative function, not identically zero. Then:

(i) For any integers d1 and d2, we have

g((d1, d2))g([d1, d2]) = g(d1)g(d2).

(ii) For any positive integer n, we have∑
d|n

µ(d)f(d) =
∏
p|n

(1− f(p)).

Proof. (i) Let d1 =
∏
pvp(d1) and d2 =

∏
pvp(d2). Obviously, we have

(d1, d2) =
∏
p∈P

pmin{vp(d1),vp(d2)}, and

[d1, d2] =
∏
p∈P

pmax{vp(d1),vp(d2)}.

This yields

g((d1, d2))g([d1, d2]) =
∏
p∈P

g
(
pmin{vp(d1),vp(d2)}

)∏
p∈P

g
(
pmax{vp(d1),vp(d2)}

)
=
∏
p∈P

g
(
pmin{vp(d1),vp(d2)}

)
g
(
pmax{vp(d1),vp(d2)}

)
=
∏
p∈P

g
(
pvp(d1)

)
g
(
pvp(d2)

)
= g(d1)g(d2).

(ii) Let n = pe11 · · · perr with pi 6= pj for i 6= j. Then∏
p|n

(1− f(p)) = 1− f(p1)− . . .− f(pr) + f(p1p2) + . . .+ f(pr−1pr)− . . .

=
∑

P⊆{p1,...,pr}

(−1)#Pf

(∏
p∈P

p

)
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=
∑
d|n

µ(d)f(d),

where we could include divisors d of n with multiple prime factors in the sum since
for those divisors we have µ(d) = 0.

During our proof, we will need the following basic connection between a multiplicative
function and its sum function due to August Ferdinand Möbius.

Theorem 4.3 (Möbius inversion) Let f(n) be a multiplicative function.

(i) Let n0 ≥ 1 be an integer. If
g(n) =

∑
d|n

f(d)

for 1 ≤ n ≤ n0 then we have for such n

f(n) =
∑
d|n

µ(d)g(n/d).

The converse also holds.

(ii) Let n0 ≥ 1 be an integer. If

g(d) =
∑

1≤n≤n0
d|n

f(n)

for 1 ≤ d ≤ n0 then we have for such d

f(d) =
∑

1≤n≤n0
d|n

µ(n)g(n/d).

The converse also holds.

Proof. (i) First, we need an important fact about the sum function of the Möbius
function which follows immediately from Lemma 4.2 (ii) with f(n) ≡ 1:

∑
d|n

µ(d) =

{
1, if n = 1,
0, otherwise.

This yields: ∑
d|n

µ(d)g(n/d) =
∑
rs=n

µ(r)g(s)

=
∑
rs=n

µ(r)
∑
d|s

f(d)
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=
∑
d|n

f(d)
∑
rs=n
d|s

µ(r)

=
∑
d|n

f(d)
∑
r|n

d

µ(r)

︸ ︷︷ ︸
= 1 iff n = d

= f(n).

The converse is proved in exactly the same way.

(ii) This can be proved with the same argument as in (i).

The following two statements yield important estimates required to prove Selberg’s in-
equality.

Proposition 4.4 Let ai > 0 and bi be real numbers for i = 1, . . . , n. Then the minimal
value of the quadratic form

n∑
i=1

aix
2
i

subject to the constraint
n∑
i=1

bixi = 1

is

m :=

(
n∑
i=1

b2i
ai

)−1
,

where the minimal value is attained for

xi =
bi
ai
·m, i = 1, . . . , n.

Proof. By the Cauchy-Schwarz inequality, we know

1 =

(
n∑
i=1

bixi

)2

=

(
n∑
i=1

bi√
ai
·
√
aixi

)2

≤

(
n∑
i=1

b2i
ai

)
·

(
n∑
i=1

aix
2
i

)
.

The linear constraint assures that x 6= 0, and hence equality is achieved if and only if

√
aixi = t · bi√

ai

for some t ∈ R. Plugging this into the constraint yields

1 =
n∑
i=1

bixi =
n∑
i=1

b2i
ai
t,

proving the statement.
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Proposition 4.5 Let g(n) be a completely multiplicative function with 0 ≤ g(p) < 1 for
all primes p, and βn a sequence with βn ≥ 0 for all n. Then for z ≥ 1, and any sequence
kn: ∑

1≤n≤z

βng(n)
∏
p|kn

(1− g(p))−1 ≥
∑

1≤n≤z

g(n)
∑
m|n

p| nm⇒p|km

βm.

Proof. Using the geometric series, we obtain:∑
1≤n≤z

βng(n)
∏
p|kn

(1− g(p))−1 =
∑

1≤n≤z

βng(n)
∏
p|kn

∑
m≥0

g(p)m

=
∑

1≤n≤z

βng(n)
∏
p|kn

∑
m≥0

g(pm)

=
∑

1≤n≤z

βng(n)
∑
r≥1

p|r⇒p|kn

g(r)

=
∑

1≤n≤z

βn
∑
r≥1

p|r⇒p|kn

g(nr)

=
∑

1≤n≤z

βn
∑

s≥1,n|s
p| sn⇒p|kn

g(s)

=
∑
s≥1

g(s)
∑

1≤n≤z,n|s
p| sn⇒p|kn

βn

≥
∑

1≤s≤z

g(s)
∑

1≤n≤z,n|s
p| sn⇒p|kn

βn

=
∑

1≤s≤z

g(s)
∑
n|s

p| sn⇒p|kn

βn.

Our argument relies on solutions to certain congruences. In order to calculate their
numbers, we need the following:

Proposition 4.6 Let f(x) ∈ Z[x] be a polynomial, and m1, m2 relatively prime integers.
Then the number of solutions to the congruence

f(x) ≡ 0 mod m1m2

(counting only distinct congruence classes) is the product of the numbers of solutions to
the congruences

f(x) ≡ 0 mod m1 and f(x) ≡ 0 mod m2.

Proof. Obviously, each solution modulo m1m2 is also a solution both modulo m1 and
modulo m2. Let conversely c1 be a solution modulo m1 and c2 a solution modulo m2.
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By the Chinese remainder theorem, there exists a unique c with c ≡ c1 mod m1 and
c ≡ c2 mod m2. Since m1 | f(c) and m2 | f(c) hold, so does m1m2 | f(c), using
(m1,m2) = 1.

Finally, we will need to estimate the growth of the divisor function.

Lemma 4.7 Let d(n) :=
∑

k|n 1 denote the number of divisors of n, and z ≥ 2. Then:

∑
1≤n≤z

d(n)

n
� (log z)2,

where the implied constant is absolute.

Proof. Using ∑
1≤n≤z

1

n
� log z,

we obtain: ∑
1≤n≤z

d(n)

n
=
∑

1≤n≤z

1

n

∑
u|n

1

=
∑

1≤u≤z

∑
1≤n≤z

u|n

1

n

=
∑

1≤u≤z

∑
1≤v≤z/u

n=uv

1

n

=
∑

1≤u≤z

∑
1≤v≤z/u

1

uv

=
∑

1≤uv≤z

1

uv

≥
∑

1≤u,v≤
√
z

1

uv

=

 ∑
1≤u≤

√
z

1

u

2

�
(
log z1/2

)2 � (log z)2.
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4.2 Deduction of Schnirelmann’s Theorem from the
Selberg Sieve

Armed with these tools, we can prove an upper bound for r(N).

Lemma 4.8 Let N ≥ 2 be an integer. Then

r(N)� N

(logN)2

∑
k|N

µ(k)2

k
,

where the implied constant is absolute.

Proof. For N = 2, 3, we have r(N) = 0, and for N = p1 + p2 odd, we must have p1 = 2
or p2 = 2, so r(N) ≤ 2. So henceforth, we will assume N ≥ 4 even. Writing S(N) for
the number of representations of N as the sum of two primes, where both primes exceed√
N , we have

r(N) =
∑

p1+p2=N

1 ≤
∑

p1+p2=N

p1,p2>
√
N

1 +
∑

p1+p2=N

p1≤
√
N

1 +
∑

p1+p2=N

p2≤
√
N

1 ≤ S(N) + 2
√
N.

Define
B := {c(N − c) : c = 1, . . . , N} .

If p1 + p2 = N and p1, p2 >
√
N then p1(N − p1) = p2(N − p2) = p1p2 is not divisible by

any prime not exceeding
√
N , so with the notation of Thm. 4.1, we have S(N) ≤ NB(z)

for all 1 < z ≤
√
N . Our task is therefore to find an upper bound for NB(z).

Let M(k) denote the number of solutions to

x(N − x) ≡ 0 mod k,

with 0 ≤ x < k. By Prop. 4.6, this is a multiplicative function. Using M(k), we have
for k ≥ 1:∑

b∈B
k|b

1 =
∑

1≤c≤N
k|c(N−c)

1 =
∑

1≤c≤N
c(N−c)≡0 mod k

1 ≤
(
N

k
+ 1

)
M(k) =

M(k)

k
N +M(k).

Moreover: ∑
b∈B
k|b

1 ≥
⌊
N

k

⌋
M(k) >

(
N

k
− 1

)
M(k) =

M(k)

k
N −M(k).

Defining

g(k) :=
M(k)

k
,
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we obtain ∑
b∈B
k|b

1 = N · g(k) +R(k),

where |R(k)| ≤ M(k) ≤ k. Since M(k) is multiplicative, so is g(k). For primes p,
we count solutions to x(N − x) ≡ 0 mod p, which is equivalent to x ≡ 0 mod p or
N − x ≡ 0 mod p. Obviously, x = 0 is always a solution in 0 ≤ x < N . If p | N , this is
the only one; for p - N , there has to be another one, where N ≡ x mod p, so we have

g(p) =

{
1
p
, p | N,

2
p
, p - N.

Since 2 | N by assumption, we also have g(2) = 1/2, and so 0 < g(p) < 1 for all primes
p. Furthermore, we define the completely multiplicative function g1 by g1(p) = g(p) for
primes p, so we can apply Thm. 4.1.

Let k be a positive integer with k = pa11 · · · parr for distinct primes pi. Then:

g1(k) =
∏

1≤i≤r

g1(pi)
ai =

∏
1≤i≤r

M(pi)
ai

paii
=

1

k

∏
1≤i≤r
pi|N

M(pi)
ai
∏

1≤i≤r
pi-N

M(pi)
ai =

1

k

∏
1≤i≤r
pi-N

2ai .

We define

h(k) = h (pa11 · · · parr ) := d

 ∏
1≤i≤r
pi-N

pai

 =
∏

1≤i≤r
pi-N

d(pai) =
∏

1≤i≤r
pi-N

(1 + ai) =
∏
p|k
p-N

(1 + vp(k)).

This yields by the above:

g1(k) ≥ 1

k

∏
1≤i≤r
pi-N

2ai ≥ 1

k

∏
1≤i≤r
pi-N

(1 + ai) =
1

k
· h(k).

In combination with Prop. 4.5, where βn = h(n), and kn = N for all n, we obtain:

∏
p|N

(1− g1(p))−1
∑

1≤k≤z

g1(k) ≥
∑

1≤k≤z

h(k)
1

k

∏
p|N

(
1− 1

p

)−1
≥
∑

1≤k≤z

1

k

∑
m|k

p| km⇒p|N

h(m).

Write now k = pa11 · · · patt qb11 · · · qbuu , where pi | N , and qj - N . The condition m | k in the
sum means that m = pc11 · · · pctt qd11 · · · qduu , where 0 ≤ ci ≤ ai, and 0 ≤ dj ≤ bj; the second
condition implies that k

m
= pa1−c11 · · · pat−ctt , i. e. dj = bj for all j = 1, . . . , u. Therefore,
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the second sum runs over all m with m = pc11 · · · pctt qb11 · · · qbuu , where 0 ≤ ci ≤ ai for all
i = 1, . . . , t. Thus

h(m) =
∏
p|m
p-N

(1 + vp(m)) = (1 + b1) · · · (1 + bu).

Using Prop. 4.7, we hence obtain∏
p|N

(1− g1(p))−1
∑

1≤k≤z

g1(k) ≥
∑

1≤k≤z

1

k

∑
m|k

p| km⇒p|N

h(m)

=
∑

1≤k≤z

1

k

∑
0≤ci≤ai

h
(
pc11 · · · pctt q

b1
1 · · · qbuu

)
=
∑

1≤k≤z

1

k

∑
0≤ci≤ai

(1 + b1) · · · (1 + bu)

=
∑

1≤k≤z

1

k
(1 + a1) · · · (1 + at) · (1 + b1) · · · (1 + bu)

=
∑

1≤k≤z

1

k
d(pa1) · · · d(pat) · d(pb1) · · · d(pbu)

=
∑

1≤k≤z

d(k)

k
� (log z)2.

Note that ∏
p∈P

(
1− 1

p2

)
= ζ(2)−1 <∞,

where ζ(s) =
∑
n−s denotes the Riemann ζ-function. Applying Lemma 4.2 (ii) to the

multiplicative function µ(k)
k
, this gives us∑

1≤k≤z

g1(k)� (log z)2 ·
∏
p|N

(1− g1(p))

= (log z)2 ·
∏
p|N

(
1− 1

p2

)
·
∏
p|N

(
1 +

1

p

)−1
≥ (log z)2 ·

∏
p∈P

(
1− 1

p2

)
·
∏
p|N

(
1− µ(p)

p

)−1

� (log z)2 ·

∑
k|N

µ(k)
µ(k)

k

−1 .
Now let k be a positive integer. This yields∏

p|k

(1− g1(p))−1 ≤ (1− g1(2))−1 · (1− g1(3))−1 ·
∏
5≤p|k

(1− g1(p))−1

Adding Prime Numbers 30



Chapter 4. The Selberg Sieve 4.2. Deduction of Schnirelmann’s Theorem

≤
(

1− 1

2

)−1
·
(

1− 2

3

)−1
·
∏
5≤p|k

(
1− 2

p

)−1
= 2 · 3 ·

∏
5≤p|k

p

p− 2

≤ 6 ·
∏
p|k

2 ≤ 6 ·
∏
p|k

p ≤ 6k.

Applying these results to the Selberg sieve (Thm. 4.1), we obtain

S(N) ≤ NB(z) ≤ N∑
1≤k≤z g1(k)

+
∑

1≤k1,k2≤z

|R([k1, k2])|
∏
p|k1

(1− g1(p))−1
∏
p|k2

(1− g1(p))−1

� N

(log z)2
(∑

k|N
µ(k)2

k

)−1 +
∑

1≤k1,k2≤z

[k1, k2] · k1 · k2

≤ N

(log z)2

∑
k|N

µ(k)2

k
+

( ∑
1≤k≤z

k2

)2

� N

(log z)2

∑
k|N

µ(k)2

k
+ z6.

Taking z = N1/12 ≤ N1/2, this finally yields:

r(N) ≤ S(N) + 2
√
N

� N

(logN1/12)2

∑
k|N

µ(k)2

k
+N6/12 + 2N1/2

� N

(logN)2

∑
k|N

µ(k)2

k
,

where we used the fact that
x

(log x)2
≥
√
x

for sufficiently large x (cf. proof to Thm. 3.1).

From this upper bound, it is easy to deduce the required upper bound for
∑
r(N)2:

Proof of Lemma 2.12. For an arbitrary x ≥ 2, we need to prove that∑
1≤N≤x

r(N)2 � x3

(log x)4
.

Applying Lemma 4.8, we obtain:

∑
1≤N≤x

r(N)2 �
∑

1≤N≤x

N2

(logN)4

∑
k|N

µ(k)2

k

2
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≤ x2

(log x)4

∑
1≤N≤x

∑
k1|N

∑
k2|N

µ(k1)
2µ(k1)

2

k1k2

≤ x2

(log x)4

∑
1≤N≤x

∑
k1,k2|N

1

k1k2

=
x2

(log x)4

∑
1≤k1,k2≤x

1

k1k2

∑
1≤N≤x
[k1,k2]|N

1

=
x2

(log x)4

∑
1≤k1,k2≤x

1

k1k2

x

[k1, k2]

≤ x3

(log x)4

∑
1≤k1,k2≤x

1

k1k2

1

(k1k2)1/2

≤ x3

(log x)4

∞∑
k1,k2=1

1

(k1k2)3/2

=
x3

(log x)4

(
∞∑
k=1

1

k3/2

)2

� x3

(log x)4
,

where we used the fact that [k1, k2] ≥
√
k1k2.

Hence, it remains to prove Selberg’s inequality (Thm. 4.1) in order to prove Schnirel-
mann’s Theorem.

4.3 Proof of the Selberg Sieve

We first establish the following result:

Proposition 4.9 Let B ⊂ Z be a finite set of integers, and k a positive integer with∑
b∈B
k|b

1 = g(k) ·#B +R(k),

where g(k) is a multiplicative function with 0 < g(p) < 1 for all primes p, and R(k)
a certain remainder term. Let NB(z) denote the number of elements of B that are not
divisible by any prime p ≤ z. Then we have the estimate

NB(z) ≤ #B

s
+

∑
1≤k1,k2≤z

λk1λk2R([k1, k2]),

where

s :=
∑

1≤k≤z

µ(k)2

f(k)
,
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f(k) :=
∑
d|k

µ(d)

g(k/d)
,

and

λk :=
µ(k)

sf(k)g(k)

∑
1≤m≤z/k
(m,k)=1

µ(m)2

f(m)

Proof. Let λ1, . . . , λbzc be arbitrary real numbers with λ1 = 1 and λi ≥ 0. Then:

NB(z) =
∑
b∈B

p|b⇒p>z

1

=
∑
b∈B

p|b⇒p>z

∑
1≤k≤z

k|b

λk


2

≤
∑
b∈B

∑
1≤k1,k2≤z

k1,k2|b

λk1λk2

=
∑

1≤k1,k2≤z

λk1λk2
∑
b∈B

[k1k2]|b

1

=
∑

1≤k1,k2≤z

λk1λk2 (g([k1k2]) ·#B +R([k1k2]))

L4.2
= #B

∑
1≤k1,k2≤z

λk1g(k1)λk2g(k2)

g((k1, k2))︸ ︷︷ ︸
=:S(z)

+
∑

1≤k1,k2≤z

λk1λk2R([k1k2])︸ ︷︷ ︸
=:T (z)

.

We therefore need an upper bound for S(z). Since g(k) is multiplicative, so is 1/g(k).
Hence we have by Möbius inversion (Thm. 4.3):

1

g(k)
=
∑
d|k

f(d).

This yields:

S(z) =
∑

1≤k1,k2≤z

1

g((k1, k2))
λk1g(k1)λk2g(k2)

=
∑

1≤k1,k2≤z

∑
d|(k1,k2)

f(d)λk1g(k1)λk2g(k2)

=
∑

1≤d≤z

f(d)
∑

1≤k1,k2≤z
d|(k1,k2)

λk1g(k1)λk2g(k2)
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=
∑

1≤d≤z

f(d)
∑

1≤k1≤z
d|k1

λk1g(k1)
∑

1≤k2≤z
d|k2

λk2g(k2)

=
∑

1≤d≤z

f(d)

∑
1≤k≤z

d|k

λkg(k)


2

.

We now want to use Prop. 4.4 to calculate the minimal value of S(z). For this purpose,
let

xd :=
∑
1≤k≤z

d|k

λkg(k).

By Möbius inversion (Thm. 4.3), we have

λkg(k) =
∑

1≤m≤z
k|m

µ(m/k)xm =
∑

1≤m≤ z
k

µ(m)xmk. (4.1)

For k = 1, we have λ1 = 1 and g(1) = 1 since g(k) is multiplicative, and hence the linear
constraint

1 = λ1g(1) =
∑

1≤m≤z

µ(m)xm.

By Prop. 4.4 we therefore obtain, that the minimum value of S(z) is

s−1 =
∑

1≤k≤z

µ(k)2

f(k)
,

which is attained for
xd =

µ(d)

f(d)
· s−1.

Plugging this into (4.1) yields the choice for λk in the statement:

λkg(k) =
∑

1≤m≤ z
k

µ(m)
µ(mk)

f(mk)
s−1

=
∑

1≤m≤ z
k

(m,k)=1

µ(m)
µ(mk)

f(mk)
s−1

=
µ(k)

sf(k)

∑
1≤m≤ z

k
(m,k)=1

µ(m)2

f(m)
,

where we used that µ(km) = 0 if (m, k) > 1. By this choice, we have S(z) = s−1, and
hence

NB(z) ≤ #B · S(z) + T (z) =
#B

s
+

∑
1≤k1,k2≤z

λk1λk2R([k1k2]).
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In order to prove Selberg’s inequality (Thm. 4.1), we obviously need a lower bound for
s and an upper bound for λk.

Proof of Thm. 4.1. First, we will show that∑
1≤k≤z

g1(k) ≤
∑

1≤k≤z

µ(k)2

f(k)
= s.

For a prime p, we have

f(p) =
∑
d|p

µ(d)

g(p/d)
=
µ(1)

g(p)
+
µ(p)

g(1)
=

1

g(p)
− 1 =

1− g(p)

g(p)
.

Let k be squarefree. Then:

µ(k)2

f(k)
= µ(k)2

∏
p|k

1

f(p)

= µ(k)2
∏
p|k

g(p)

1− g(p)

= µ(k)2
∏

p|k g1(p)∏
p|k 1− g1(p)

= µ(k)2g1(k)
∏
p|k

(1− g1(p))−1 ≥ 0. (4.2)

This identity holds still for k = 1 and non-squarefree k (in this case both sides simply
vanish), so by Prop. 4.5 we have:∑

1≤k≤z

µ(k)2

f(k)
=
∑

1≤k≤z

µ(k)2g1(k)
∏
p|k

(1− g1(p))−1

≥
∑

1≤k≤z

g1(k)
∑
m|k

p| km⇒p|m

µ(m)2.

Let dk denote the greatest squarefree divisor of k (also known as the radical of k). Then
if p | k

dk
then p | k, and so p | dk, i. e. dk satisfies the condition on m in the second sum,

hence this sum does not vanish. This yields:∑
1≤k≤z

µ(k)2

f(k)
≥
∑

1≤k≤z

g1(k)
∑
m|k

p| km⇒p|m

µ(m)2

≥
∑

1≤k≤z

g1(k)
∑
dk|k

µ(dk)
2
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≥
∑

1≤k≤z

g1(k).

It remains to prove that the upper bound for |λk|. Using the fact that both f(k) and
g(k) are non-negative, we obtain

|λk| =
∣∣∣∣ µ(k)

f(k)g(k)

∣∣∣∣ ·
∣∣∣∣∣∣∣
∑

1≤m≤z/k
(m,k)=1

µ(m)2

f(m)

∣∣∣∣∣∣∣ ·
∣∣∣∣∣ ∑
1≤m≤z

µ(m)2

f(m)

∣∣∣∣∣
−1

︸ ︷︷ ︸
≤1

≤
∣∣∣∣ µ(k)

f(k)g(k)

∣∣∣∣ =
µ(k)2

f(k)g1(k)

(4.2)
= µ(k)2 · g1(k)

g1(k)
·
∏
p|k

(1− g1(p))−1

≤
∏
p|k

(1− g1(p))−1,

where again we needed the fact that µ(k) = 0 if k is not squarefree. Applying these
estimates to Prop. 4.9, we finally have:

NB(z) ≤ #B

s
+

∑
1≤k1,k2≤z

λk1λk2R([k1, k2])

≤ #B

s
+

∑
1≤k1,k2≤z

|λk1 | · |λk2| · |R([k1, k2])|

≤ #B∑
1≤k≤z g1(k)

+
∑

1≤k1,k2≤z

|R([k1, k2])| ·
∏
p|k1

(1− g1(p))−1 ·
∏
p|k2

(1− g1(p))−1,

proving the required estimate.

4.4 Applications of the Selberg Sieve to Twin Primes

In our proof of Schnirelmann’s Theorem, we applied the Selberg sieve to the sequence
(n(N−n))1≤n≤N in order to sift out elements with more than two prime factors. We can
apply the same idea to twin primes, i. e. primes p such that p+2 is prime as well. For this,
we examine the sequence (n(n+ 2))1≤n≤N , and want to find members with exactly two
prime factors. The famous twin prime conjecture states that there are infinitely many
twin primes. This has been suspected since antiquity, but still remains unproved. For
the given reasons, this conjecture is believed to be equally hard as Goldbach’s problem.
This section will show how to apply Selberg’s sieve methods to twin primes and similar
problems.
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Leonard Euler was the first to prove that the harmonic series that runs only over
prime values is still divergent, i. e. ∑

p∈P

1

p
=∞.

The Norwegian mathematician Viggo Brun proved in 1919 that the harmonic series
over the twin primes converges, using sieve methods based on the inclusion-exclusion
principle. Unfortunately, this leaves the question about the infinity of the twin primes
unanswered. Selberg’s sieve is a more sophisticated version of Brun’s sieve, and we will
use the results of the previous sections to obtain stronger estimates and more general
results than Brun’s original ones.

Theorem 4.10 Let N be a positive integer, x ≥ 0 a real number, and πN(x) denote the
number of primes p not exceeding x such that p+N is prime as well. Then

πN(x)� x

(log x)2

∑
k|N

µ(k)2

k
,

where the implied constant is absolute.

From this result, we can immediately deduce Brun’s Theorem:

Corollary 4.11 (Brun) The sum over the reciprocals of the twin primes converges, i. e.

lim
N→∞

∑
2≤p≤N
p,p+2∈P

(
1

p
+

1

p+ 2

)
= B2 <∞,

where B2 is known as Brun’s constant.

Proof. Let p1, p2, . . . denote the sequence of primes such that pi + 2 is prime as well.
Obviously ∑

2≤p≤x
p,p+2∈P

(
1

p
+

1

p+ 2

)
≤

∑
2≤p≤x
p,p+2∈P

(
1

p
+

1

p

)
= 2

∑
2≤p≤x
p,p+2∈P

1

p
,

so it suffices to prove that
∑

1/pi converges. By Thm. 4.10, we have

n = π2(pn)� pn
(log pn)2

≤ pn
(log n)2

,

and hence
1

pn
� 1

n(log n)2
.

Using
d

dx

(
− 1

log x

)
=

1

x(log x)2
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this yields

M∑
n=1

1

pn
=

1

3
+

M∑
n=2

1

pn

� 1

3
+

M∑
n=2

1

n(log n)2

≤ 1

3
+

1

2(log 2)2
+

∫ M

2

dx

x(log x)2

=
1

3
+

1

2(log 2)2
+

1

log 2
− 1

logM

M→∞−−−−→ 1

3
+

1

2(log 2)2
+

1

log 2
<∞.

It therefore remains to prove Thm. 4.10 which can be done in exactly the same way as
Lemma 4.8.

Proof of Thm. 4.10. Without loss of generality, we can assume that N is even since
otherwise one member of the pair (n, n + N) must be even, and hence there is at most
one such pair. Writing S(x) for the number of primes p between

√
x and x such that

p+N is prime as well, we obtain

πN(x) =
∑
2≤p≤x

p,p+N∈P

1 =
∑

2≤p≤
√
x

p,p+N∈P

1 +
∑
√
x<p≤x

p,p+N∈P

1 ≤ S(x) +
√
x.

We define the sequence
B := {c(c+N) : 1 ≤ c ≤ x} .

If p and p + N are both prime with p exceeding
√
x then p(p + N) is not divisible by

any prime not exceeding
√
x. Hence S(x) ≤ NB(z) for any 2 < z ≤

√
x, so again we

need an upper bound for NB(z).

Let M(k) denote the number of solutions to the congruence

y(y +N) ≡ 0 mod k

with 0 ≤ y < k. By Prop. 4.6, this is a multiplicative function with∑
b∈B
k|b

1 =
∑
1≤c≤x

c(c+N)≡0 mod k

1 = #B · g(k) +R(k),

where g(k) = M(k)/k, and |R(k)| ≤M(k) ≤ k (cf. proof of Lemma 4.8). For primes p,
the function M(p) is counting solutions to y(y+N) ≡ 0 mod p which has the solutions
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y = 0 and y ≡ −N mod p where these two coincide if p | N . This yields

g(p) =

{
1
p
, p | N,

2
p
, p - N.

Since 2 | N by assumption, we have g(2) = 1/2, and so 0 < g(p) < 1 for all primes
p. Defining the completely multiplicative function g1 by g1(p) := g(p), we can apply
Thm. 4.1, and hence obtain the same estimates as in our proof to Lemma 4.8. This
yields

S(x) ≤ NB(z)� #B

(log z)2

∑
k|N

µ(k)2

k
+ z6.

Taking z = x1/12 ≤ x1/2, we finally obtain

πN(x) ≤ S(x) +
√
x

� #B

(log x1/12)2

∑
k|N

µ(k)2

k
+ x6/12 + x1/2

� x

(log x)2

∑
k|N

µ(k)2

k
.

Further applications of the Selberg sieve include estimates for the number of primes in
a certain interval, and the proof of the Brun-Titchmarsh Theorem on the number of
primes in arithmetic progression, but an exhaustive account of these theorems would go
far beyond the scope of this treatise.
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5 Waring’s Problem

It was known since the ancient Greece that every positive integer can be represented
as the sum of at most four squares, but it should take until 1770 when Joseph Louis
Lagrange proved his famous four-square theorem. In the same year, Edward Waring
asked the question if for every integer k ≥ 2 there is a constant g(k) such that every
integer can be represented as the sum of at most g(k) powers of exponent k. Many
special cases have been settled during the 19th century, but a general solution to Waring’s
problem would not have been found until 1909 when David Hilbert came up with his
proof [Hil09] which made heavy use of analytic means but would also yield upper bounds
for g(k).

An elementary proof was given by Yuri Linnik [Lin43] in 1943 applying the Schnirel-
mann density to this problem. An account of the original proof was presented by Alek-
sandr Khinchin [Khi52] reviving Linnik’s combinatorial argument. Georg Johann
Rieger [Rie54] refined Linnik’s method to obtain upper bounds for g(k) (although these
estimates are weaker than those analytic means yield). In Melvyn B. Nathanson’s
book [Nat00], a generalisation to integer-valued polynomials is presented. We will follow
Hua Loo Keng’s argument [Hua59, Hua82] employing exponential sums to receive the
required estimates. Donald J. Newman [New60, New97] gives a similar proof with
different estimates. An account of the proof, using Hua’s methods but avoiding the
exponential sums, was provided by Yuri V. Nesterenko [Nes06].

Throughout this chapter, let k ≥ 2 be a fixed exponent, and Ak be the sequence of all
kth powers, i. e.

Ak := {nk : n ∈ N0}.
All implied constants may only depend on k (and c consequently). We aim to prove the
following statement:

Theorem 5.1 (Waring’s Problem) The sequence Ak is a basis of finite order for all k ≥
2, i. e. there is a constant g(k) such that every non-negative integer can be represented
as the sum of at most g(k) elements of Ak.

Because of Thm. 2.8 it suffices to prove that there exists a constant c = c(k) ≥ k such
that cAk has positive density. Since 0 and 1 are members of Ak for all k, this implies
that Ak itself is a basis of finite order. The strategy is the same as in our proof of
Schnirelmann’s Theorem in Chapter 2: We give upper and lower bounds for the number
of representations of an integer as the sum of kth powers, and by this, deduce that the
set cAk has positive density. The next section will outline the way to achieve this.



Chapter 5. Waring’s Problem 5.1. Preliminary Notes

5.1 Preliminary Notes

First we define rc(N) to be the number of solutions to

xk1 + . . .+ xkc = N,

with xi ≥ 0 for all i = 1, . . . , c, i. e.

rc(N) =
∑

xk1+...+xkc=N

xi≥0

1.

The required lower bound is easy:

Lemma 5.2 Let x be a real number. Then:∑
N≤x

rc(N)� xc/k,

where the implied constant depends on k only.

Proof. Let ni for i = 1, . . . , c be a non-negative integer not exceeding (x/c)1/k. Then
certainly

nk1 + . . .+ nkc ≤ x,

so for every choice of ni we receive one of the representation the sum is counting. In
total, we have bx/ccc/k such distinct choices giving us the claimed lower bound.

Analogously to the proof of Schnirelmann’s Theorem, we now need an upper bound for
rc(N). Our aim is therefore to prove the following estimate:

Lemma 5.3 Let x be a real number, and N a non-negative integer. Then:

rc(N)� N
c
k
−1,

where the implied constant depends on k only.

By summation, we immediately gain the estimate∑
N≤x

rc(N)2 � x2
c
k
−1,

enabling us to immediately apply Prop. 2.9. However, we will use the slightly stronger
result of Lemma 5.3 to deduce a solution to Waring’s problem in a more insightful way.

Proof of Thm. 5.1. Assume that σ(cAk) = 0. Then by Lemma 2.2, for all ε > 0 we find
some x such that

cAk(x) < εx. (5.1)
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Obviously, if N /∈ cAk, then rc(N) = 0, so we can skip those N when counting solutions.
Using Lemma 5.3, we obtain:∑

0≤N≤x

rc(N) =
∑

0≤N≤x
N∈cAk

rc(N)

L5.3
�

∑
0≤N≤x
N∈cAk

N
c
k
−1

≤
∑

0≤N≤x
N∈cAk

x
c
k
−1

= x
c
k
−1cAk(x)

(5.1)
< x

c
k
−1 · εx = εxc/k.

As ε can be chosen to be arbitrarily small, this contradicts our estimate in Lemma 5.2.
Thus the set cAk must have positive density, and is hence by Thm. 2.8 a basis of finite
order, say h. So every non-negative integer can be represented as the sum of h elements
of cAk. But these elements are themselves sums of kth powers, so every integer non-
negative integer can be represented as the sum of at most h · c < ∞ such kth powers,
solving Waring’s problem.

Consequently, it remains to prove Lemma 5.3 for some constant c. As it turns out,
it suffices to take c = 8k−1, so we will henceforth use this value. We will now reduce
Lemma 5.3 to an estimate for exponential sums. For the sake of clarity, we define

e(x) := exp(2πix).

First, we need an easy tool we will use several times to transform counting solution into
estimating integrals:

Lemma 5.4 Let q be an integer. Then:∫ 1

0

e(qα) dα =

{
1, if q = 0,
0, if q 6= 0.

Proof. The case q = 0 is obvious since the integration is empty. For q 6= 0, the integrand
e(qα) describes a |q|-fold closed circle around the origin, hence the integral vanishes by
Cauchy’s integral theorem. (The statement also follows immediately from the funda-
mental theorem of calculus.)

We will now establish the required estimate:
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Theorem 5.5 Let P ≥ 1 be an integer, and c = 8k−1. Then:∫ 1

0

∣∣∣∣∣
P∑
x=0

e(xkα)

∣∣∣∣∣
c

dα� P c−k,

where the implied constant depends on k only.

Before we proceed to prove Thm. 5.5, we will show how to prove Lemma 5.3 with this
tool.

Proof of Lemma 5.3. Let N be an arbitrary non-negative integer. Then, using the fact
that |e(x)| = 1 for all real numbers x:

rc(N) = |rc(N)| =

∣∣∣∣∣∣∣∣
∑

xk1+...+xkc=N

xi≥0

1

∣∣∣∣∣∣∣∣
L5.4
=

∣∣∣∣∣∣∣
bN1/kc∑
x1=0

· · ·
bN1/kc∑
xc=0

∫ 1

0

e(α(xk1 + . . .+ xkc −N)) dα

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∫ 1

0

bN1/kc∑
x1=0

e(xk1α)

 · · ·
bN1/kc∑

xc=0

e(xkcα)

 e(−Nα) dα

∣∣∣∣∣∣∣
≤
∫ 1

0

∣∣∣∣∣∣∣
bN1/kc∑
x=0

e(xkα)

∣∣∣∣∣∣∣
c

|e(−Nα)| dα

=

∫ 1

0

∣∣∣∣∣∣∣
bN1/kc∑
x=0

e(xkα)

∣∣∣∣∣∣∣
c

dα

T5.5
�
⌊
N1/k

⌋c−k ≤ N
c
k
−1.

In order to solve Waring’s problem, we therefore need to prove Thm. 5.5 which is the
subject of the next section.

5.2 Linear Equations and Exponential Sums

In the proof of Thm. 5.5, we will need to estimate the number of solutions to linear
equations. The required upper bounds are provided by the next proposition:
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Proposition 5.6 Let N,X, Y be integers with X, Y ≥ 1, and q(N) denote the number
of integral solutions to

x1y1 + x2y2 = N (5.2)

with |xi| ≤ X and |yi| ≤ Y . Then:

q(N) ≤

27X3/2Y 3/2, if N = 0,
60XY

∑
d|N

1
d
, if N 6= 0.

Proof. First, let N = 0. Obviously, for xi and yi there are 2X + 1 and 2Y + 1 choices,
respectively. Consider x1, x2, and y1 to be chosen. Then there is at most one choice for
y2 left, so

q(0) ≤ (2X + 1)2(2Y + 1) ≤ (3X)23Y = 27X2Y.

On the other hand, if x1, y1, and y2 are considered to be chosen. Then we have q(0) ≤
27XY 2, so altogether we have

q(0) ≤ min{27X2Y, 27XY 2} ≤
√

27X2Y · 27XY 2 = 27X3/2Y 3/2,

where we used that the minimum does not exceed the geometric mean.

Not let N 6= 0. Without loss of generality, we can assume X ≤ Y . By q1(N), we denote
the number of integral solutions to (5.2) with (x1, x2) = 1, where |x2| ≤ |x1| ≤ X and
|yi| ≤ Y . Clearly x1 6= 0, because otherwise x2 = 0, giving N = 0 which contradicts our
assumption. Now by q2(N, x1, x2), we denote the number of integral solutions to (5.2)
with fixed x1 and x2. Since x1 and x2 are relatively prime, this is soluble for all N by
the Euclidean algorithm. Given one particular solution (y′1, y

′
2), all other solutions are

of the form
y1 = y′1 + tx2, y2 = y′2 + tx1.

Since we required |yi| ≤ Y , this gives us the condition

|t| ≤
∣∣∣∣y′2 − y2x1

∣∣∣∣ ≤ 2Y

|x1|
.

So the number of possible values for t and hence the value of q2(N ;x1, x2) is bounded
by:

q2(N ;x1, x2) ≤ 2
2Y

|x1|
+ 1 ≤ 4Y +X

|x1|
≤ 5Y

|x1|
.

Thus we can estimate the value of q1(N) by summation over all cases:

q1(N) ≤
∑

1≤|x1|≤X

∑
|x2|≤|x1|

5Y

|x1|

≤ 5Y
∑

1≤|x1|≤X

1

|x1|
(2|x1|+ 1)
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≤ 5Y
∑

1≤|x1|≤X

3

≤ 5Y · 3 · 2X = 30XY.

Dropping the condition |x2| ≤ |x1|, this hence yields that there are at most 2 · 30XY
solutions to (5.2) with (x1, x2) = 1.

Now let (x1, x2) = d > 1 with d | N . (Otherwise there are not solutions to (5.2)
according to the Euclidean algorithm.) We examine the equation

x′1y1 + x′2y2 =
N

d
.

Obviously, every solution to this equation yields a solution to (5.2) with x1 = dx′1 and
x2 = dx′2, where the restrictions have changed to

|x′i| ≤
X

d
, |yi| ≤ Y, (x′1, x

′
2) = 1.

By the above, the number of solutions to this kind of equation does not exceed 60X
d
Y .

Summing over all divisors of N , we finally obtain

q(N) ≤ 60XY
∑
d|N

1

d
,

as required.

Instead of proving Thm. 5.5 directly, we will prove a stronger result which allows us to
tackle the problem by induction.

Theorem 5.7 (Hua’s Lemma) Let P ≥ 1 be an integer, f(x) = akx
k + . . .+ a1x+ a0 ∈

Z[x] a polynomial with degree k, and coefficient

ak � 1, ak−1 � P, . . . , a1 � P k−1, a0 � P k.

Then we have the estimate:∫ 1

0

∣∣∣∣∣
P∑
x=0

e(f(x)α)

∣∣∣∣∣
8k−1

dα� P 8k−1−k, (5.3)

where the implied constant depends on k only.

Obviously, f(x) = xk is a polynomial satisfying the condition of the theorem, so Thm. 5.5
is an immediate consequence of the above.

Proof. We proceed by induction over k, the degree of the polynomial f . So, let k = 2,
i. e. we have

f(x) = a2x
2 + a1x+ a0,
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where
a2 � 1, a1 � P, a0 � P 2.

Let Q denote the number of integral solutions to

f(x1) + f(x2) + f(x3) + f(x4)− f(y1)− f(y2)− f(y3)− f(y4) = 0 (5.4)

with 0 ≤ xi, yj ≤ P . Then we have

Q =
∑

0≤xi,yj≤P

f(x1)+...+f(x4)−f(y1)−...−f(y4)=0

1

=
∑

0≤xi,yj≤P

∫ 1

0

e(α(f(x1) + . . .+ f(x4)− f(y1)− . . .− f(y4))) dα

=

∫ 1

0

( ∑
0≤x≤P

e(f(x)α)

)4( ∑
0≤x≤P

e(−f(x)α)

)4

dα

=

∫ 1

0

( ∑
0≤x≤P

e(f(x)α)

)4( ∑
0≤x≤P

e(f(x)α)

)4

dα

=

∫ 1

0

∣∣∣∣∣ ∑
0≤x≤P

e(f(x)α)

∣∣∣∣∣
8

dα,

where z̄ denotes the complex conjugate of z. Hence, we need to find an upper bound for
Q. For i = 1, . . . , 4, define

zi := xi − yi, wi := a2(xi + yi) + a1.

For any solution to
z1w1 + z2w2 + z3w3 + z4w4 = 0, (5.5)

we obtain by plugging in

ziwi = (xi − yi)(a2(xi + yi) + a1) = a2x
2
i + a1xi − a2y2i − a1yi = f(xi)− f(yi),

and hence a solution to (5.4). Let R denote the number of integral solutions to (5.5) with
|zi|, |wj| � P . By am � P 2−m and 0 ≤ xi, yj ≤ P , we have amxmi � P 2−mPm = P 2

and amymj � P 2, thus the restriction on zi and wj ensures that every solution to (5.5)
in zi and wj yields a solution to (5.4) in f(xi) and f(yj). Our task is therefore to find
an upper bound for R, giving an upper bound for Q and hence by the above for the
exponential sum in (5.3). So let q(N) denote the number of integral solution to

z1w1 + z2w2 = N

with |zi|, |wj| � P . By Prop. 5.6, we have

q(N) ≤

27P 3, if N = 0,
60P 2

∑
d|N

1
d
, if N 6= 0.
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To count all solution to (5.5), we need to sum up over all possible cases for N , where
|N | � P 2 with the same argument as before for |zi|, |wj| � P . For every choice
of N , we have q(N) solutions to z1w1 + z2w2 = N and q(−N) = q(N) solutions to
z3w3 + z4w4 = −N . This finally yields∫ 1

0

∣∣∣∣∣ ∑
0≤x≤P

e(f(x)α)

∣∣∣∣∣
8

dα = Q ≤ R

=
∑
|N |�P 2

q(N)2

= q(0)2 +
∑

0<|N |�P 2

q(N)2

� P 6 +
∑

0<N�P 2

P 4

∑
d|N

1

d

2

= P 6 + P 4
∑

0<N�P 2

∑
d1,d2|N

1

d1d2

= P 6 + P 4
∑

1≤d1,d2�P 2

1

d1d2

∑
0<N�P2

[d1,d2]|N

1

� P 6 + P 4
∑

1≤d1,d2�P 2

1

d1d2
· P 2

[d1, d2]

≤ P 6 + P 4
∑

1≤d1,d2�P 2

1

d1d2
· P 2

(d1d2)1/2

≤ P 6 + P 6

∞∑
d1,d2=1

1

(d1d2)3/2
� P 6,

where we used the fact that [d1, d2] ≥
√
d1d2. This proves the induction basis.

Now let k ≥ 3 and assume that the statement is true for k − 1. Writing

ϕ(x, y) :=
1

y
(f(x+ y)− f(x))

for y 6= 0, we see∣∣∣∣∣
P∑
x=0

e(f(x)α)

∣∣∣∣∣
2

=

 P∑
x=0

e(f(x)α)

 ·( P∑
y=0

e(f(y)α)

)

=

(
P∑
x=0

e(−f(x)α)

)
·

(
P∑
y=0

e(f(y)α)

)
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=
P∑
x=0

P∑
y=0

e(α(f(y)− f(x)))

=
P∑
x=0

∑
−x≤y≤P−x

e(α(f(x+ y)− f(x)))

=
P∑
x=0

e(0) +
∑′

0<|y|≤P

∑′

0≤x≤P

e(hϕ(x, y)α)

= P + 1 +
∑′

0<|y|≤P

∑′

0≤x≤P

e(yϕ(x, y)α),

where
∑′ means that the summation is only over the relevant part of the set. Fixing

y 6= 0 in ϕ(x, y), we observe

ϕ(x, y) =
1

y
(f(x+ y)− f(x))

=
1

y

(
k∑
i=0

ai(x+ y)i −
k∑
i=0

aix
i

)

=
1

y

(
k∑
i=1

ai(x+ y)i −
k∑
i=1

aix
i

)

=
1

y

(
k∑
i=1

ai

i∑
j=0

(
i

j

)
xi−jyj −

k∑
i=1

aix
i

)

=
1

y

(
k∑
i=1

aix
i +

k∑
i=1

ai

i−1∑
j=1

(
i

j

)
xi−jyj +

k∑
i=1

aiy
i −

k∑
i=1

aix
i

)

=
k∑
i=1

ai

i−1∑
j=1

(
i

j

)
xi−jyj−1 +

k∑
i=1

aiy
i−1,

and hence, ϕ(x, y) is a polynomial in x with degree k− 1 whose coefficients are integers
that satisfy the conditions of the induction hypothesis. We now define

ay :=
∑′

0≤x≤P

e(yϕ(x, y)α),

giving us by the above:∣∣∣∣∣
P∑
x=0

e(f(x)α)

∣∣∣∣∣
2·8k−2

=

(P + 1) +
∑′

0<|y|≤P

ay

8k−2

=
8k−2∑
i=0

(
8k−2

i

)
(P + 1)i

 ∑′

0<|y|≤P

ay

8k−2−i
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≤ max

(P + 1)8
k−2

,

∣∣∣∣∣∣
∑′

0<|y|≤P

ay

∣∣∣∣∣∣
8k−2
 ·

8k−2∑
i=0

(
8k−2

i

)

= 28k−2 ·max

(P + 1)8
k−2

,

∣∣∣∣∣∣
∑′

0<|y|≤P

ay

∣∣∣∣∣∣
8k−2


� max

P 8k−2

,

∣∣∣∣∣∣
∑′

0<|y|≤P

ay

∣∣∣∣∣∣
8k−2
 .

In order to prove the statement, we need to check the cases that the maximum takes on
either value. So first assume ∣∣∣∣∣∣

∑′

0<|y|≤P

ay

∣∣∣∣∣∣ ≤ P.

Applying this to the exponential sum in (5.3) yields:

∫ 1

0

∣∣∣∣∣
P∑
x=0

e(f(x)α)

∣∣∣∣∣
8k−1

dα =

∫ 1

0

∣∣∣∣∣
P∑
x=0

e(f(x)α)

∣∣∣∣∣
2·8k−24

dα

�
∫ 1

0

(
P 8k−2

)4
dα

= P 4·8k−2 ≤ P 8k−1−k.

We now assume ∣∣∣∣∣∣
∑′

0<|y|≤P

ay

∣∣∣∣∣∣ > P.

Applying the Cauchy-Schwarz inequality (Thm. 1.1) repeatedly, we obtain:

∣∣∣∣∣
P∑
x=0

e(f(x)α)

∣∣∣∣∣
2·8k−2

�

∣∣∣∣∣∣
∑′

0<|y|≤P

ay

∣∣∣∣∣∣
23(k−2)

≤

 ∑′

0<|y|≤P

|1| · |ay|

23(k−2)

≤

 ∑′

0<|y|≤P

1

 ·
 ∑′

0<|y|≤P

|ay|2
23(k−2)−1
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≤

 ∑′

0<|y|≤P

1

2

·

 ∑′

0<|y|≤P

1

 ·
 ∑′

0<|y|≤P

|ay|2
2

23(k−2)−2

≤


 ∑′

0<|y|≤P

1

23−1

·

 ∑′

0<|y|≤P

|ay|2
3




23(k−2)−3

≤ · · ·

≤

 ∑′

0<|y|≤P

1

23(k−2)−1

·

 ∑′

0<|y|≤P

|ay|2
3(k−2)


≤ (3P )8

k−2−1 ·
∑′

0<|y|≤P

|ay|8
k−2

� P 8k−2−1 ·
∑′

0<|y|≤P

∣∣∣∣∣ ∑′

0≤x≤P

e(yϕ(x, y)α)

∣∣∣∣∣
8k−2

(5.6)

Writing the sum as a Fourier series, we have∣∣∣∣∣ ∑′

0≤x≤P

e(yϕ(x, y)α)

∣∣∣∣∣
8k−2

=
∑
n

Ane(ynα).

From the restrictions for the coefficients, we obtain

n� max
0≤x≤P

|ϕ(x, y)| � P k−1.

Calculating the coefficients of the Fourier series and applying the induction hypothesis,
we have

|An| =

∣∣∣∣∣∣
∫ 1

0

∣∣∣∣∣ ∑′

0≤x≤P

e(yϕ(x, y)β)

∣∣∣∣∣
8k−2

· e(−nβ) dβ

∣∣∣∣∣∣
≤
∫ 1

0

∣∣∣∣∣ ∑′

0≤x≤P

e(yϕ(x, y)β)

∣∣∣∣∣
8k−2

· |e(−nβ)| dβ

�
∫ 1

0

P 8k−2−(k−1) dβ = P 8k−2−(k−1).

Raising (5.6) to the 4th power and integrating over α from 0 to 1, this finally yields:

∫ 1

0

∣∣∣∣∣
P∑
x=0

e(f(x)α)

∣∣∣∣∣
8k−1

dα
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�
∫ 1

0

P 4·8k−2−4 ·

 ∑′

0<|y|≤P

∣∣∣∣∣ ∑′

0≤x≤P

e(yϕ(x, y)α)

∣∣∣∣∣
8k−2
4

dα

= P 4·8k−2−4 ·
∫ 1

0

 ∑′

0<|y|≤P

∑
|n|�Pk−1

Ane(ynα)

4

dα

= P 4·8k−2−4 ·
∑

0<|yi|≤P

|nj |�Pk−1

An1 · · ·An4

∫ 1

0

e(α(y1n1 + . . .+ y4n4)) dα

= P 4·8k−2−4 ·
∑

0<|yi|≤P,|nj |�Pk−1

y1n1+...+y4n4=0

An1 · · ·An4

� P 4·8k−2−4 · P 4·8k−2−4(k−1) ·
∑

0<|yi|≤P,|nj |�Pk−1

y1n1+...+y4n4=0

1

� P 4·8k−2−4 · P 4·8k−2−4(k−1) · P 3k = P 8k−1−k,

where we used the estimate for the number of integral solutions to y1n1 + . . .+ y4n4 = 0
with |yini| � P k according to the argument in the induction basis. This proves the
theorem, and hence solves Waring’s problem.

5.3 Concluding Remarks and Generalisations

Finally, it is worth noticing that the two main results of this paper can be combined
to obtain the Waring-Goldbach problem: Can every (sufficiently large) integer be repre-
sented as the sum of a bounded number of kth powers of primes? Some progress has been
made for small exponents, yet the general question remains unanswered. Hua [Hua65]
gives an account on this topic. But this is just one example of the many unsolved prob-
lems in additive number theory. The fact that methods from many areas of mathematics
can be applied to these problems makes it an active and exciting field of research with
many interesting results yet to be expected.
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